Стяжка из пенополистиролбетона


Стяжка из полистиролбетона — нельзя ошибиться

 

Сразу о главном и терминах

Давайте сразу расставим точки и запятые в понятиях и терминах. Стяжка это слой в конструкции пола, являющийся основанием под покрытие пола. Задача стяжки: выровнять поверхность, скрыть инженерные коммуникации, создать уклон (если нужно), распределить нагрузку, нормализовать теплоизоляцию.

Минимальная марка используемого бетона для стяжки М150, класс прочности - В10/В12,5 соответствует 13-17 МПа допустимой нагрузки.

Полистиролбетон — это вид особенно лёгкого пустотелого бетона, замешанного на цементном вяжущем с добавлением ПВГ и модификаторов. Краткое техническое обозначение — ПСБ. Подробно в статье: Что такое полистиролбетон, его свойства.

ПВГ — это заполнитель из полистирола вспененного и гранулированного. По действующему ГОСТ 33929-2016 в устройстве полов применяется полистиролбетон (ПСБ), в виде:

ПСБ теплоизоляционный для теплоизоляции чердачных перекрытий, покрытий пола, в том числе над подвалами и подпольями. Марка по плотности: D150-220, класс по прочности на сжатие B 0,35 (М2-М5).

Обращу ваше внимание, что по действующему ГОСТ 33929-2016 выпускается ПСБ с марками по полотности:

  • D300-350 (B0,75 и B1) — это теплоизоляционный конструкционный ПСБ;
  • D400-D600 (B1,5-B2,5) — это конструкционный теплоизоляционный ПСБ.

Однако использование ПСБ, непосредственно для нагрузочной стяжки пола в ГОСТ НЕ предусмотренно, только для стен и монолитных конструкций.

Что это значит

Отсутствие прямой нормативной базы на устройство именно стяжки пола из полистиролбетона не мешает её делать, ссылаясь на европейские нормативы. Стены, перемычки, даже плиты перекрытий можно делать из полистиролбетона. Стяжку, как таковую нет.

Из ПСБ можно сделать теплоизоляционную прослойку в конструкции пола, на которую делается мокрая или сухая стяжка ЦПС (М150).  В исключительных случаях, если это конструкционно оправдано, стяжка из полистиролбетона может быть сделана под чистовую отделку только в жилых помещениях с минимальной пешей нагрузкой.

При устройстве пола применяйте полистиролбетон высокой плотности и покрывайте его стяжкой Цементно Песчаной Смеси.

Стяжка из полистиролбетона в продаже

Вы легко можете найти в продаже мешки с сухой смесью для стяжки полистиролбетон. Чаще она называется «лёгкая цементная стяжка» или «тихая стяжка» или «тепло-шумо-изоляционная стяжка». Если вы прочтёте инструкцию то чёрным по белому увидите:

  • Смесь предназначена для предварительного выравнивания оснований, создания звукоизолирующего слоя под последующую укладку различных декоративных покрытий.
  • Скрывает неровности и перепады основания, трубопроводы и другие коммуникации.
  • После затвердевания данной стяжки необходимо устройство прочного покрытия, например, прочной или высоко прочной стяжки толщиной от 35-40 мм и только потом укладывать отделочное покрытие.
  • При устройстве утепления перекрытий чердаков и подвалов поверхностной стяжки не требуется.

Заключение

Я точно не знаю, как используется стяжка из полистиролбетона за границей. У нас стяжка ПСБ должна использоваться, как слой утеплителя в помещениях без пешеходной нагрузки (чердаки). Также как слой тепло и звукоизоляции под прочную стяжку (МЦПС и ПСЦПС) в жилых помещениях. На производстве ПСБ стяжка не применяется. Эффективна для укрытия коммуникаций на полу и облегчения нагрузки на перекрытие. Позволяет минимизировать толщину мокрой стяжки до 40 мм на самых сложных основаниях.

Нормативные документы

ГОСТ 33929-2016 «Полистиролбетон. Технические условия»

Еще статьи

 

Прочность модифицированного пенополистиролбетона после динамического циклического нагружения

EPS-бетон был получен путем смешивания пенополистирольных сфер (EPS), полимерной эмульсии и загустителя с матричным бетоном, и этот бетон имел хорошие характеристики поглощения энергии вибрации. Основываясь на экспериментальных данных, полученных при объемном соотношении EPS 0%, 20%, 30% и 40% путем замены матрицы или крупного заполнителя, оба стиля дизайна имели почти одинаковую прочность на сжатие. Применяя частоту 5 Гц, 50000 или 100000 раз, циклическую нагрузку 40 кН, 50 кН и 60 кН, показано, что чем больше был размер включений, тем ниже прочность на сжатие пенополистирола; чем больше была приложенная динамическая циклическая нагрузка, тем более очевидным было изменение прочности на сжатие.Между тем, прочность бетона EPS не претерпела заметных изменений после испытания на прочность. Результаты этого исследования имели практическое значение для использования бетона EPS в некоторых долгосрочных циклических динамических нагрузках.

1. Введение

Поскольку легкий бетон из пенополистирола (EPS) обладает характеристиками легкости, поглощения энергии и сохранения тепла, он используется во многих конкретных отраслях строительной отрасли, таких как высотные здания, плавучие морские платформы и большие сооружения. размерный и длиннопролетный бетон [1, 2].Легкий бетон (LWC) не загрязняет окружающую среду, поскольку при производстве частиц EPS потребляется мало энергии, а частицы не имеют яда и вреда. Бетон EPS обладает характеристиками экономичности, защиты окружающей среды и энергосбережения, что соответствует концепции дизайна современного строительного материала.

В 1970-х Кук [3] поместил частицы EPS в бетон и провел исследования. Систематические исследования начались в 1990-х годах; Французский ученый установил взаимосвязь между прочностью легкого бетона и пористостью, добавив в бетон различные пропорции частиц EPS [4].Бетон EPS был произведен путем замены частично обычных заполнителей в бетоне; конкретная стадия смешивания зависела от требований к плотности и уровням прочности. Соотношение между прочностью и широким диапазоном плотности пенополистирола можно получить, изменив масштаб смеси частиц пенополистирола [1, 4–8]. Также проводились исследования, посвященные влиянию размера частиц пенополистирола на прочность бетона на сжатие [9, 10]. Латекс бутадиен-стирольного каучука (SBR) был применен в бетоне EPS в качестве полимерной добавки Ченом и Лю [11], чтобы улучшить однородность частицы EPS в LWC и убедиться, что частица не будет плавать во время вибрации бетона.Бабу и др. [12] увеличили прочность за счет добавления летучей золы в бетон из пенополистирола и улучшили начальную прочность за счет добавления микрокремнезема в бетон из пенополистирола [13]. С введением метода предварительного смешивания, использованного для изготовления EPS-бетона Ченом и Лю [14], удалось избежать сегрегации частиц EPS в заполнителе во время заливки. Лаалаи и Саб [15] проверили формулу трансформации среди образцов разных размеров.

Бетон из пенополистирола считается энергопоглощающим материалом для защиты подземных военных сооружений и некоторых специфических конструкций, которые подвергаются длительным циклическим нагрузкам.Между тем, он предъявляет требования к прочности и долговечности пенополистирола. Основная цель данной статьи - количественно оценить влияние размера включений пенополистирола на прочность на сжатие, улучшить прочность и удобоукладываемость бетона из пенополистирола путем смешивания трех добавок. Прочность бетона EPS была получена путем сравнения между образцами до и после приложения циклической нагрузки 40 кН, 50 кН и 60 кН в течение 50000 или 10000 раз.

2. Материалы и принципы конструирования смесей

Испытательные образцы были изготовлены из того же типа, что и использованный для очень высокопрочного бетона, а частица пенополистирола заменила часть бетона или крупного заполнителя.

(1) Цемент. Изготовлен из цемента CEM I 52,5.

(2) Мелкий заполнитель. Изготовлен из речного песка округлой формы с модулем крупности 2,85.

(3) Крупный заполнитель. Это гравий диаметром от 4 до 20 мм.

(4) Частицы EPS. EPS - это частицы пенополистирола в виде сфер с диапазоном диаметров 1–3 мм и плотностью 20 кг / м. 3 , которые показаны на Рисунке 1.


(5) Дым кремнезема. Поскольку дисперсность микрокремнезема очень низкая, она составляет около 80–100 по сравнению с обычным цементом, и он используется в бетоне для заполнения пор между гранулами цемента, а гидратные продукты подобны цементу в воде; другая смесь будет связана гелем. Соотношение компонентов микрокремнезема обсуждается К. Г. Бабу и Д. С. Бабу [13].

(6) Примесь. Суперпластификатор на основе поликарбоксилата был использован для улучшения удобоукладываемости и прочности на сжатие пенополистирола, а соотношение компонентов смеси соответствует результатам Miled et al.[4]. Частицы пенополистирольных сфер представляют собой гидрофобный материал, чрезвычайно легкий с плотностью всего 12–20 кг / м 3 , который может вызывать сегрегацию при смешивании и создавать неоднородность пенополистирола, что приводит к снижению прочности на сжатие.

Есть два пути решения этой проблемы: один - усилить связь между частицами EPS и агрегатами путем преобразования частиц EPS из гидрофобного материала в гидрофильный материал, а другой - повысить вязкость бетона EPS.Чтобы максимально повысить прочность на сжатие пенополистирола, образец был изготовлен с использованием обоих методов. В смесь добавляли полимерную эмульсию для увеличения вязкости; соотношение между прочностью на сжатие и соотношением компонентов смеси показано на фиг. 2. Простой эфир гидроксипропилцеллюлозы использовали для контроля консистенции и водоудерживающей способности бетонной суспензии; соотношение между прочностью на сжатие и соотношением компонентов смеси показано на рисунке 3. Две добавки могут гарантировать, что частицы EPS не будут разделяться во время вибрации бетона.



(7) Метод смешивания. Из-за гидрофобного материала частиц EPS, удобоукладываемость и долговечность бетона EPS были плохими во время процесса смешивания [16]. Действительно, после многократного перемешивания для изготовления пенополистирола был использован метод перемешивания, подобный технике «обертывания песком». Во-первых, он втягивал частицы EPS и 1/3 воды и 1/2 эмульсии полимера в бункер для смешивания. После перемешивания в течение одной минуты он поместил гравий в бункер для смешивания, затем перемешивал его в течение одной минуты и, наконец, втянул все другие агрегаты в бункер для смешивания и перемешивал их в течение двух минут.Метод смешивания обеспечит удобоукладываемость и однородность бетона EPS.

3. Испытание на прочность при сжатии

Кубики из пенополистирола размером 100 мм были использованы для изучения прочности на сжатие после хранения в лабораторных условиях в течение 28 дней. Водоцементное соотношение - важный показатель, влияющий на прочность на сжатие. Взаимосвязь между водоцементным соотношением и прочностью на сжатие показана на рисунке 4. Прочность на сжатие значительно снижается, если водоцементное соотношение установлено на 0.36, поскольку частицы пенополистирола состоят из гидрофобного материала, и удобоукладываемость падает при увеличении водоцементного отношения. Прочность на сжатие незначительно изменяется при увеличении водоцементного отношения с 0,32 до 0,34, учитывая экономику применительно к практическому проектированию, водоцементное отношение в этой статье установлено на 0,32.


Чтобы наблюдать влияние объемного отношения частиц пенополистирола на прочность на сжатие, образцы бетона из пенополистирола различной плотности были изготовлены в соответствии с таблицей 1.


Объемная доля пенополистирола% Тип конструкции Соотношение вода /
цемент%
Цемент
кг / м 3
Речной песок
кг / м 3
Гравий
кг / м 3
Вода
кг / м 3
Пары кремнезема
кг / м 3
Суперпластификатор
кг / м 3
Полимерная эмульсия
кг / м 3
гидроксипропилцеллюлоза
кг / м 3

0 Без замены 32 538 542 1152 172 26.9 8,07 8,07 2,69

0,2 Заменить бетон 32 430 434 922 138 21,52 6,456 6,456 2,152

0,2 Только замена гравия 32 538 542 662 172 26.9 8,07 8,07 2,69

0,3 Заменить бетон 32 375 380 808 120 18,75 5,625 5,625 1,875

0,3 Только замена гравия 32 538 542 662 172 26.9 8,07 8,07 2,69

0,4 ​​ Заменить бетон 32 323 325 691 103 16,14 4,842 4,842 1,614

0,4 ​​ Только замена гравия 32 538 542 172 172 26.9 8,07 8,07 2,69

Объемный коэффициент пенополистирола, рассматриваемый здесь как пористость бетона, определялся по следующей формуле [4]: ​​где - плотности матрицы и и - плотности бетона EPS и частиц EPS соответственно.

Три образца были изготовлены в соответствии с каждым стилем дизайна, и каждое значение было указано, потому что пористость и прочность на сжатие образцов незначительно различаются.Влияние пористости на прочность на сжатие легкого бетона из пенополистирола показано на рисунках 5 и 6.



Минимальная и максимальная прочность на сжатие бетона из пенополистирола с конструкцией частиц пенополистирола, заменяющих бетон в возрасте 28 дней, составила 18,05 и 40,31 МПа; Между тем, минимальная и максимальная прочность на сжатие составляла 16,23 и 40,07 МПа в соответствии со стилем конструкции частиц пенополистирола, заменяющих крупнозернистый заполнитель из рисунков 5 и 6. Было обнаружено, что объемное соотношение пенополистирола оказало наиболее значительное влияние на прочность на сжатие заменяющего пенополистирола. бетон или крупный заполнитель и увеличение объема пенополистирола и уменьшение прочности на сжатие.

Согласно результатам испытаний, прочность на сжатие двух стилей конструкции в основном совпадала, но пористость бетона EPS отличалась от показанных на рисунках 5 и 6. С учетом экономии в практической инженерии стоимость замены частиц EPS бетон был меньше, а прочность на сжатие в этом стиле дизайна была такой же, как у частиц пенополистирола, заменяющих крупный заполнитель. Таким образом, основной задачей данной статьи является изучение механических свойств пенополистирола с частицами пенополистирола, заменяющими бетон.

Посредством анализа экспоненциальной подгонки полученные эмпирические зависимости могут быть записаны в виде где представляют прочность на сжатие (МПа) через 28 дней. Коэффициент корреляции предложенной связи составляет 0,989, что указывает на значительную корреляцию.

Режим отказа. Различное соотношение объема частиц пенополистирола имело другой вид разрушения, что показано на рисунке 7. После испытания прочности на сжатие матрица разрушилась, и масштаб трещины был меньше вместе с увеличением объемного отношения частиц пенополистирола.Это явление было вызвано характеристиками поглощения энергии частицами EPS, и внешний вид оставался неизменным, даже если бетон EPS был разрушен.


4. Долговечность бетона из пенополистирола

Бетон из пенополистирола обладает такими характеристиками, как устойчивость к вибрации и поглощение энергии, которые могут использоваться в гражданском строительстве на основе циклических нагрузок для снижения вибрации системы. Тем не менее, испытание на прочность пенополистирола с вибрационными свойствами имеет большое значение, поскольку приложение вибрационной нагрузки часто сопровождается характеристикой низкой прочности.В этой статье качественно проанализировано влияние объемного отношения пенополистирола, продолжительности циклов вибрации и вибрационной нагрузки на долговечность бетона из пенополистирола при испытании на циклическую нагрузку.

Циклическое динамическое испытание на вибрацию использовало систему испытаний на усталость с электрогидравлическим сервоприводом 370,50 MTS, показанную на Рисунке 8, которая имела нагрузочную способность 500 кН и динамический ход 150 мм, а данные испытаний можно было отображать в реальном времени и сохранять в компьютере. Объемный коэффициент EPS составлял 0%, 20%, 30% и 40%, время цикла вибрации составляло 50000 и 100000, вибрационная нагрузка составляла 60 кН, 50 кН и 40 кН, а частота вибрации составляла 5 Гц; синусоида была принята для моделирования процесса вибрации.


4.1. 50000-кратное испытание на прочность

После 50 тысяч циклических нагрузочных испытаний бетон будет проходить испытание на прочность; значение прочности на сжатие до и после циклического нагружения показано на рисунках 9–11.




Прочность на сжатие бетона без частиц пенополистирола снизилась в разной степени после испытания на долговечность, и чем больше прикладываемая циклическая нагрузка, тем более очевидным было снижение прочности бетона.Прочность на сжатие бетона с объемной долей частиц EPS (20% EPS) была меньше, чем раньше, в то время как прочность на сжатие 30% и 40% EPS бетона увеличивается в разной степени при приложении циклической нагрузки 40 кН, в основном из-за циклической нагрузки. приводило к сжатию частиц пенополистирола и небольшому уплотнению бетона пенополистирола при приложении нагрузки; следовательно, прочность на сжатие 30% и 40% бетона EPS была выше, чем до испытания на долговечность. При приложении нагрузки от 40 кН до 50 кН и, наконец, до 60 кН, влияние циклической нагрузки на долговечность пенополистирола становилось все более очевидным; Между тем, чем больше объемное соотношение частиц EPS, тем меньше будет изменение прочности на сжатие после 50000 циклических нагрузок.

4.2. 100000-кратное испытание на долговечность

Поскольку 100000-кратное циклическое динамическое испытание требует длительного времени, в исследовании использовался пенополистирол-бетон с объемным соотношением частиц 0% и 30% в качестве примера, применяя синусоидальную циклическую нагрузку 50 кН 100000 раз на пенополистирол-бетон; прочность на сжатие до и после испытания на долговечность, как показано на рисунке 12.


Изменение прочности на сжатие матрицы было очевидно после 100000 раз динамической вибрационной нагрузки, как показано на рисунке 12, в то время как прочность на сжатие составляла 30%. У пенополистирола снизилась прочность по сравнению с прочностью после 50000-кратного циклического динамического вибрационного нагружения, но это снижение было небольшим; Таким образом, можно сделать вывод, что бетон из пенополистирола - это материал с хорошей прочностью.

5. Выводы

Бетон из пенополистирола обладает такими преимуществами, как небольшая плотность, теплоизоляция и хорошие сейсмические характеристики. Таким образом, исследование новых бетонных материалов имеет большое значение для изучения современных конструкционных материалов и практической инженерии. Экспериментальные исследования были проведены на трех типах бетона EPS с объемным соотношением частиц EPS бетона от 0% до 40% с целью подтверждения наличия влияния внутреннего содержания частиц на прочность на сжатие и долговечность бетона EPS.Выводы делаются следующим образом: (1) Для увеличения прочности на сжатие полимерная эмульсия смешивается с бетонным раствором, который связывает вместе другие смеси, и обсуждается взаимосвязь между ее соотношением смешивания и прочностью на сжатие. Гидроксипропилцеллюлоза смешивается с пенополистиролом для улучшения удобоукладываемости раствора, и изучается влияние его соотношения смешивания на прочность бетона на сжатие. (2) Прочность на сжатие двух типов пенополистирола, в котором бетон заменяется или только гравий, замененный частицами EPS, был в основном идентичным; Результат показал, что прочность на сжатие двух стилей дизайна в основном совпадала.Прочность на сжатие пенополистирола заметно снизилась с увеличением объемного отношения частиц пенополистирола; кривая уменьшения была аналогична кривой экспоненциального типа. (3) Значение приложения динамической циклической нагрузки оказало большое влияние на прочность на сжатие после испытания на долговечность. Прочность на сжатие бетона из пенополистирола с объемным соотношением частиц 40% была увеличена после приложения циклической динамической нагрузки 40 кН и 50 кН, а другое соотношение объема частиц из пенополистирола в бетоне было уменьшено после испытания на прочность; Между тем, степень снижения прочности на сжатие была обратно пропорциональна объемному соотношению частиц EPS.Кроме того, чем больше была приложенная динамическая циклическая нагрузка, тем больше был бы разрыв в прочности на сжатие между до и после испытания на долговечность. Прочность на сжатие EPS-бетона с объемным соотношением частиц 0% и 30% упадет, когда динамическая циклическая нагрузка будет приложена 100000 раз, а снижение прочности на сжатие матрицы было намного больше, чем объемное соотношение частиц EPS-бетона 30% по сравнению с применением динамическая вибрационная нагрузка 50000 раз. (4) Результаты испытаний на долговечность показали, что легкий бетон из пенополистирола имеет хорошую долговечность и очень хорошо используется в практической инженерии, которая имеет определенные сейсмические требования и прикладывает циклическую нагрузку.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

.

Кирпичей из ячеистого бетона с заполнителем из переработанного пенополистирола

Кирпич из ячеистого бетона был получен путем использования легкого раствора с заполнителем из переработанного пенополистирола вместо песчаных материалов. После определения свойств блока (впитывание, прочность на сжатие и растягивающие напряжения) было обнаружено, что этот кирпич соответствует требованиям стандартов кладки, используемых в Мексике. Полученный материал легче товарного, что позволяет быстро его обрабатывать, контролировать качество и транспортировать.Он менее проницаем, что помогает предотвратить образование влаги, сохраняя свою прочность за счет большей адгезии, чем у сухого полистирола. Он был более гибким, что делало его менее уязвимым к растрескиванию стен из-за смещения грунта. Кроме того, он экономичен, поскольку в нем используется материал, пригодный для вторичной переработки, и он обладает свойствами, предотвращающими порчу, увеличивая срок его службы. Мы рекомендуем использовать полностью сухой EP в сухой среде, чтобы получить лучшие свойства кирпича.

1.Введение

Легкий строительный раствор может быть получен разными способами и в основном зависит от воздушного фактора, то есть уменьшение плотности материала заключается во включении воздуха в его структуру, что может быть сделано путем замены крупного заполнителя (песка) на воздух. Таким образом, включение воздуха в структуру материала способствует образованию пузырьков (пустого пространства) внутри бетона или раствора. Поэтому при высыхании из воздушных отверстий образуется легкий материал. Этот тип бетона известен как Ячеистый бетон .Было предложено определять легкий бетон как бетон, сделанный с легким заполнителем или без заполнителя, который позволяет получить вес меньше, чем у обычного бетона 2400 кг / м 3 [1].

Что касается использования полистирола в бетонах, в литературе упоминается использование шариков из пенополистирола (EP) в качестве легкого заполнителя как в бетонах, так и в растворах, содержащих микрокремнезем в качестве дополнительного вяжущего материала. Было обнаружено, что полученные в результате бетоны имели плотность от 1500 до 2000 кг / м 3 с соответствующей прочностью от 10 до 21 МПа [2].Другое исследование охватывает использование шариков из пенополистирола (EPS) и невспененного полистирола (UEPS) в качестве легкого заполнителя в бетонах, которые содержат летучую золу в качестве дополнительного вяжущего материала. Легкий бетон с широким диапазоном плотности бетона (1000–1900 кг / м 3 ) изучались в основном на прочность на сжатие, прочность на разрыв, перенос влаги и поглощение. Результаты показывают, что при сопоставимых размерах заполнителя и плотности бетона бетон с заполнителем UEPS показал на 70% более высокую прочность на сжатие, чем заполнитель EPS [3].

Мелкодисперсный микрокремнезем значительно улучшил связь между EP-валиками и цементным тестом и увеличил прочность на сжатие EP-бетона. Исследование показало, что пенополистирол с плотностью 800–1800 кг / м 3 и прочностью на сжатие 10–25 МПа может быть получен путем частичной замены крупного и мелкого заполнителя шариками пенополистирола. Кроме того, добавление стальной фибры значительно улучшило усадку при высыхании [4].

Другое исследование показывает сравнение механических свойств EP-бетонов, содержащих летучую золу, с литературными результатами для бетонов, содержащих только обычный портландцемент в качестве связующего [5].Исследование предлагает разработку класса бетона с заполнителем из полистирола структурного качества с широким диапазоном плотности бетона от 1400 до 2100 кг / м 3 путем частичной замены крупного заполнителя на заполнитель полистирола в контрольном бетоне [6].

Латекс бутадиен-стирольного каучука в качестве полимерной добавки применялся в легком пенополистироле (EP) бетоне. Было исследовано влияние условий твердения и соотношения полимер-цемент на прочность при сжатии и изгибе полимерцементных EP-бетонов [7].Затвердевший бетон, содержащий гранулы из химически обработанного пенополистирола, показал, что на прочность, жесткость и химическую стойкость бетона из полистирольного заполнителя постоянной плотности влияет соотношение воды и цемента [8].

В первой части этого исследования, основанного на определении и характеристиках легкого бетона, был проведен поиск рециклируемого материала с низкой плотностью, который можно было бы переработать с использованием дешевого экологически безопасного метода рециркуляции. Этим материалом был пенополистирол (EP).Из этого материала был получен строительный раствор, в котором крупные агрегаты были полностью заменены частицами с низкой плотностью. Таким образом, кирпичи состоят из переработанного пенополистирола в качестве заполнителя и коммерческого портландцемента в качестве связующего. В отличие от большинства работ, опубликованных в литературе, этот раствор не использует пуццоланы, добавки или дополнительные заполнители. В этом предыдущем исследовании этот материал имел хорошую адгезию к гидратированному цементу, а лучшие механические свойства ячеистого бетона были получены при соотношении вода / цемент 0.4 и 600 мкг пенополистирола [9].

На втором этапе, в основе этого исследования, и с определенной технологией, конкретным технологическим применением раствора из вторичного материала было изготовление ячеистого кирпича. Они должны быть конкурентоспособными по цене, качеству, механическим и физическим свойствам по сравнению с существующими на рынке. Кроме того, в ячеистых кирпичах должны использоваться экологически чистые материалы, пригодные для вторичной переработки.

2. Методы и методы

Действия, перечисленные ниже, позволили изготовить и провести механическую и физическую оценку кирпичей из ячеистого бетона; (i) получение и измельчение EP; (ii) применение водоцементного отношения 0.4; (iii) изготовление ячеистого бетона; (iv) изготовление кирпичей с использованием стальных форм толщиной? См; (v) снятие формы и определение сухого веса кирпичей; (vi) испытания на абсорбцию, сжатие и растяжение; Стандарт ASTM C67-03a включает три испытания [10]; (vii) отчет о результатах; (viii) сравнение результатов с заявленными значениями некоторых коммерческих кирпичей в Мексике. Прочность на сжатие легкого бетона из пенополистирола (EPS) значительно увеличивается с уменьшением размера валика ЭПС [11, 12].Кроме того, другое исследование включает три размера частиц полистирола (1, 2,5 и 6,3 мкм) в бетоне и приходит к выводу, что размер 1 мкм имеет большее сопротивление сжатию [12]. Затем, поскольку целью проекта было повторное использование перерабатываемого материала, такого как пенополистирол, размер частиц зависел от устойчивого и дешевого процесса измельчения. Фактически, достигнутые размеры (2–4 мкм) были очень близки к тем, о которых сообщалось как о большей прочности на сжатие [12].

В первую очередь был проведен поиск отходов ЭП.Эти остатки EP были от предметов, полученных в основном от упаковки компьютеров. После того, как материал был собран, его измельчали ​​с водой в кухонном блендере, потому что без воды измельчение было невозможным. Полученный размер частиц составил 2–4 мкм. Затем избыток воды удаляли, и ЭП сушили в естественных условиях без использования печей.

В соответствии с предыдущими исследованиями, ячеистый бетон был получен путем смешивания 600 мкг полистирола и водоцементного отношения 0,4. В качестве цемента использовался CPC (композитный портландцемент).

Следует отметить, что одним из важных факторов, повлиявших на это исследование, была высокая влажность окружающей среды в месте, где проводилось это исследование (Росарио, Аргентина). Этот факт привел к получению жидкого композита, который позволил легко заполнять стальные формы.

Были испытаны два типа образцов, помеченных буквами A и B, с размерами? Мм. Тип А имел водоцементное соотношение 0,4, вес 0,600 кг EP в полувлажном состоянии и возраст 28 дней.Тип B имел такое же водоцементное соотношение, но вес полусухого EP составлял 0,520 кг. Возраст тестирования B составлял всего 14 дней из-за окончания проекта.

Из-за влажности окружающей среды, когда мы сушим влажный полистирол (полученный материал для процесса фрезерования) в течение 7 дней, мы получили массу 600 мкг для кирпичей A и B. Сразу же мы обрабатываем кирпичи A (с 600 мкг) на первом этапе проекта. Затем, когда через 28 дней был использован оставшийся полистирол, мы заметили, что вес уменьшился.Поэтому оставшийся материал был разделен и использован в пяти кирпичах B. Итак, кирпичи B содержали 520 мкг полистирола. Поэтому кирпичи А были изготовлены из «полувлажного» полистирола, а кирпичи B - из «полусухого» полистирола. Мы не получили полностью сухой вес EP из-за условий локальной влажности окружающей среды.

Уровни влажности окружающей среды для «полувлажного» и «полусухого» полистирола были одинаковыми; разница заключалась во времени экспозиции в этих условиях. Влажность окружающей среды в месте проведения эксперимента составляла 62–95% [14] (Росарио, Аргентина; август 2012 г.).Полистирол, названный «полувлажным», выдерживался 7 дней в этой среде и 28 дней в «полусухой».

Через 27 дней для кирпичей A и 13 дней для кирпича B кирпичи прошли испытание на абсорбцию (для этого экспериментального испытания требуется 24 ч [10] насыщения кирпичей для его оценки). Таким образом, результаты испытаний на абсорбцию были получены через 28 дней для кирпичей A и через 14 дней для кирпичей B с испытаниями на сжатие и растяжение.

Теоретически, при хранении во влажной среде около 90% прочности достигается за первые 28 дней.Основным критерием оценки прочности бетона на сжатие является прочность бетона на 28-е сутки. Бетонный образец испытывается через 28 дней, и результат этого испытания считается критерием качества и жесткости этого бетона [15].

3. Результаты и обсуждение

Статистическая оценка процента абсорбции A и B показана в таблице 1. Для измерения абсорбционной способности стандарт ASTM C67-03a указывает, что материал должен находиться в воде в течение 24 часов. [10].Процент абсорбции определялся по (1) [10]. Вес кирпича в сухом и насыщенном состоянии (и соответственно) до и после его насыщения составлял, соответственно: Из таблицы 1 видно, что кирпич B (полусухой EP) имеет меньшую абсорбцию, чем кирпич A (полувлажный EP). Хотя время исследования кирпича Б составляет половину времени А, тенденция к увеличению поглощения очень небольшая. Таким образом, очевидно, что этот материал может уменьшить влажность, образующуюся в стенах, построенных из других типов кирпичей, поглощение которой больше из-за типа используемого заполнителя, такого как песок.


Свойство Количество данных Среднее значение
Медиана Отклонение Стандартное отклонение Коэффициент вариации,%

Поглощение, A 6 9,328 9,135 0,842 0,917 9,84
Поглощение, B 6 4.464 4,21 0,284 0,533 11,95
Прочность на сжатие, A 5 9,69 9,3 0,840 0,916 9,46
Прочность на сжатие, B 6,916 7,28 0,598 0,773 11,18
Предел прочности на разрыв, A 6 2,195 2,22 0.254 0,503 22,95
Прочность на разрыв, B 5 1,632 1,64 0,002 0,046 2,85

Статистические результаты сжатия Испытания [10] для обоих типов образцов площадью? мм приведены в таблице 1. Следует напомнить, что кирпичам А было 28 дней, а кирпичам Б - 14 дней. Из-за вышеизложенного различия в силе были оправданы.Также можно заметить, что тенденция к увеличению прочности продолжается в образцах B, и она превысит значение, достигаемое образцами типа A, из-за большей адгезии (меньшего поглощения), создаваемой полусухим EP.

Прочность на разрыв или модуль разрыва [10] рассчитывалась как где - предел прочности на разрыв или модуль разрыва (МПа), приложенная максимальная нагрузка (кг), - расстояние между опорами (см) (рассчитывается как длина образца минус 2 дюйма, поскольку опоры находятся на расстоянии 1 дюйма от каждого конца) , - горизонтальное расстояние от точки приложения нагрузки до места возникновения трещины (см), и - ширина и толщина образца соответственно (см).

Статистические результаты испытания на растяжение образцов типов A и B показаны в таблице 1. Они были определены из (2).

Из таблицы 1 среднее значение прочности на разрыв для образцов А и В составляет 2,195 и 1,632 МПа соответственно. Образец типа B показал частичную прочность на разрыв по сравнению с той, которая может развиться за 28 дней.

Предполагается, что традиционные бетонные кирпичи с крупными заполнителями и кирпичи из обожженной глины имеют очень низкие значения прочности на разрыв, примерно 0.В среднем 8? МПа [13]. Таким образом, EP придает кирпичу свойства изгиба, которые способствуют устойчивости стен, особенно когда он имеет восходящие и нисходящие движения, вызванные, среди прочего, проблемными почвами, такими как расширяющиеся и разрушающиеся почвы, изменения уровня грунтовых вод и землетрясения. Следовательно, этот материал уменьшает появление трещин в стене. Этот аспект не учитывался при производстве традиционных кирпичей.

Бетон вряд ли можно считать однородным, потому что свойства его составляющих разные, и он в какой-то степени анизотропен.Тем не менее, подход механики разрушения помогает понять механизм разрушения бетона. Фактические пути разрушения обычно проходят по границам раздела самых крупных частиц заполнителя и прорезают цементную пасту, а иногда также и сами частицы заполнителя [16].

Как и в бетоне, пути разрушения обычно проходят по границам раздела частиц заполнителя полистирола и прорезают цементную пасту и сами частицы заполнителя. При сжатии трещины примерно параллельны приложенной нагрузке, но некоторые трещины образуются под углом к ​​приложенной нагрузке (рис. 1).Параллельные трещины вызваны локальным растягивающим напряжением в направлении, перпендикулярном сжимающей нагрузке; наклонные трещины возникают из-за обрушения, вызванного развитием плоскостей сдвига. Следует отметить, что характер разрушения при испытании на сжатие относится только к прямым напряжениям [16].


При испытании на изгиб максимальное растягивающее напряжение достигается в нижнем волокне испытательной балки, поэтому трещины вертикальные и находятся около точки приложения нагрузки (рис. 2).В испытании на растяжение верхняя поверхность подвергается сжатию, а нижняя поверхность подвергается растяжению. Фактически, концентрация напряжения в вершине трещины является трехмерной, но наибольшая слабость возникает, когда трещина ориентирована перпендикулярно направлению приложенной нагрузки. В действительно хрупком материале (равномерное распределительное напряжение) энергии, выделяемой в начале распространения трещины, достаточно для продолжения этого распространения, потому что по мере расширения трещины максимальное напряжение увеличивается, а сопротивление хрупкому разрушению уменьшается.Как следствие, процесс ускоряется. В случае неоднородного напряжения (например, при изгибе) распространение трещины дополнительно блокируется окружающим материалом при более низком напряжении [16].


В таблице 2 показаны результаты свойств, полученных в образцах. Они сравниваются с параметрами, указанными в другом месте [13]. Из таблицы видно, что кирпич EP легче других, что облегчает их разработку, производство и транспортировку. Кроме того, этот материал обладает свойством низкой абсорбции, что помогает предотвратить возможное попадание влаги в стены.Кроме того, этот материал является стойким, так как его прочность на сжатие (с полусухим EP) аналогична заявленным максимальным коммерческим показателям, которые могут быть превышены при использовании EP в сухом состоянии. Наконец, этот материал может быть в четыре раза более гибким, чем некоторые коммерческие блоки, что делает его менее уязвимым для возможных трещин в стенах, вызванных восходящими или нисходящими движениями подстилающего грунта.


Свойство Кирпич А Кирпич В Обожженный глиняный кирпич [13] Строительный кирпич [13]

Размеры: толщина, ширина , и длина (см) 6, 10, 20 6, 10, 20 5.5, 11,5, 23 18, 12, 38
Объемный вес (кг / м 3 ) 1568 1236 1580 1890
Среднее поглощение (%) 9,3 4,3 17,8 25,2
Прочность на сжатие (МПа) 9,69 6,92 11,16 4,69
Среднее напряжение разрыва (МПа) 2,94 1.65 0,755 0,794

Относительно высокие значения коэффициента вариации (таблица 1) в тесте зависели от типа теста и количества данных. Испытания на абсорбцию и сжатие имеют одинаковые значения коэффициента вариации; то есть мы видим тот же диапазон ошибок при выполнении теста, который можно уменьшить, увеличив количество тестов. Затем испытание на растяжение показывает два очень разных коэффициента вариации, в основном из-за завершения испытания, которое требует большой точности и осторожности.В этом тесте мы заметили, что образец A имеет большую ошибку, чем образец B, потому что A был протестирован первым. Однако все данные по всем свойствам были выше контрольных значений в таблице 2.

Оба материала (A и B) не имеют одинакового времени и количества полистирола. Образец A имеет полные начальные переменные, а B - нет. Следовательно, они не могут быть сопоставимы между собой. Итак, в этой работе мы сообщаем и анализируем свойства, приобретенные в образце A, а затем свойства, приобретенные в образце B (со ссылкой на образец A), потому что даже если этот материал имеет свои неполные начальные переменные, он становится значимыми свойствами именно из-за эта ситуация.Наконец, оба образца были лучше, чем стандартные образцы в таблице 2.

4. Выводы

Кирпич, разработанный в этом исследовании, показал эффективные механические свойства, и его можно было использовать в качестве кирпичной кладки в строительстве, так как этот материал соответствует требуемым параметрам. Он состоит из переработанного пенополистирола в качестве заполнителя и коммерческого портландцемента в качестве связующего. В отличие от большинства работ, описанных в литературе, в этом растворе не используются пуццоланы, добавки или дополнительные заполнители.

В отличие от бетона (с крупным заполнителем), пути разрушения всегда следуют за границами раздела частиц заполнителя полистирола и прорезают цементную пасту и сами частицы заполнителя. Трещины полистирольного кирпича аналогичны трещинам в бетоне, о которых сообщалось при испытании на сжатие и растяжение.

В результатах свойств мы наблюдали такой же диапазон ошибок при выполнении тестов, который можно уменьшить, увеличив количество тестов.

Устойчивое использование пенополистирола в кирпичах из ячеистого бетона было очень выгодным по сравнению с существующими на рынке.Полученный материал легче, что облегчает его изготовление и транспортировку, и менее проницаем, что позволяет избежать образования влаги, сохраняя его прочность. Кроме того, он более прочен и гибок, что делает его менее уязвимым к растрескиванию стен, вызванному движением грунта. Наконец, этот материал дешевле, потому что он использует перерабатываемый материал и обладает свойствами, предотвращающими его порчу, увеличивая срок его службы.

Мы наблюдаем, что влажность окружающей среды и влажность EP снижают стойкость кирпича и увеличивают его плотность и впитываемость.Мы рекомендуем использовать полностью сухой EP в сухой среде, чтобы получить лучшие свойства кирпича.

.

Что такое пенополистирол? (с иллюстрациями)

Пенополистирол - это пенополистирол, обладающий определенными желательными свойствами благодаря своей структуре. Он необычайно легкий и плавучий, а также хороший изолятор от тепла и звука. Его можно использовать в качестве строительного материала или элемента дизайна, а также можно придать ему множество форм для различных бытовых нужд.

Пенополистирол - хороший теплоизолятор.

В большинстве случаев пенополистирол белого цвета и состоит из небольших связанных между собой бусинок. Он сделан путем объединения химических веществ этилена и бензола, чтобы получить соединение, известное как стирол. Затем стирол обрабатывают другими химическими веществами, которые вызывают полимеризацию молекул стирола или их группировку в длинные цепи. Эта реакция может продолжаться только до определенного момента, а затем прекращается. Получившимся шарикам дают остыть, а затем их очищают.

Пенополистирол технически пригоден для вторичной переработки.

После формирования и очистки бусинки должны быть расширены, что происходит в три основных этапа.Сначала шарики нагревают горячим воздухом или паром до тех пор, пока их плотность не станет трех процентов от первоначальной. Затем шарики охлаждают в течение 24 часов и формуют. Попав внутрь формы, они впрыскиваются паром низкого давления, который еще больше расширяет шарики и сплавляет их. Когда форма остынет, пенополистирол готов к использованию или отгрузке.

Пенополистирол существенно отличается от аналогичного продукта, называемого экструдированным полистиролом.Экструдированный полистирол производится с использованием хлорфторуглеродов (ХФУ), которые, по мнению многих, вредны для баланса озона в атмосфере Земли. Пенополистирол изготавливается без этих соединений, что делает его более безвредным для окружающей среды. Однако оба продукта могут быть переработаны, как и любой пластик.

Еще одно важное преимущество пенополистирола, особенно для таких продуктов, как одноразовые стаканчики, состоит в том, что он очень экономичен.Производство пенополистирола требует гораздо меньше энергии, чем производство альтернатив на бумажной основе. Кроме того, он может производить гораздо меньше отходов, чем бумага. Например, при правильном сжигании из одной тонны (907 кг) полистирольных стаканов образуется только 0,2 унции (5,66 г) золы, тогда как из того же количества бумаги образуется 200 фунтов (90,7 кг) золы.

Также следует отметить, что пенополистирол не подвергается биологическому разложению.Некоторые считают это недостатком, но тот факт, что он химически инертен, делает его стабильным наполнителем, который помогает обеспечить безопасную и гигиеничную рекультивацию полигона. Несмотря на это, преобладающей тенденцией было сокращение объема пенополистирола и его переработка везде, где это возможно.

.

Экспериментальное исследование и корректировка модели

В этом исследовании сверхлегкий пенополистироловый пенобетон (EFC) был изготовлен методом химического вспенивания, а его теплоизоляционные свойства были измерены переходным методом при различных температурах окружающей среды (от −10 до 40 ° C). C). Затем наблюдали влияние температуры и объемной доли EPS на теплопроводность и плотность EFC в сухом состоянии. В конечном итоге уравнение Ченга – Вачона было модифицировано путем введения температурного параметра.Результаты показали, что теплопроводность EFC уменьшается с увеличением температуры. Также было продемонстрировано, что подходящий объем частиц EPS может не только уменьшить теплопроводность EFC, но также уменьшить влияние температуры на теплопроводность. Теплопроводность EFC при различных температурах была точно предсказана в этом исследовании с использованием предложенной модели.

1. Введение

Пенобетон (FC) - это тип легкого пористого материала на основе цемента с плотностью от 400 кг / м 3 до 1900 кг / м 3 , который широко используется в области строительства. особенно для снижения статической нагрузки конструкций и для сохранения тепла, демпфирования, звукоизоляции и заполнения пор [1].По сравнению с органическими изоляционными материалами ТЭ имеет более высокую прочность, лучшую огнестойкость и долговечность [1–3]. Однако, чтобы соответствовать более высоким требованиям к теплоизоляционным характеристикам, плотность FC следует дополнительно снизить до менее чем примерно 400 кг / м 3 . В соответствующих исследованиях установлено, что метод химического вспенивания более подходит для сверхлегких ТЭ, чем механическое вспенивание [4–9].

Пенополистирол (EPS) был впервые представлен в качестве легкого заполнителя для бетона Куком в 1973 году [10].Благодаря своей превосходной теплоизоляции и близким пористым свойствам частицы пенополистирола существенно влияют на тепловые характеристики FC. Например, Sayadi et al. [11] добавили регенерированные частицы EPS в FC и обнаружили, что теплопроводность образца FC с объемной долей EPS 82% снизилась на 45%, а плотность - на 62,5%. Видно, что EPS имеет широкие перспективы применения и большую потенциальную ценность в FC [12–14].

Теплопроводность - важный параметр, отражающий способность бетона передавать тепло.Многие исследователи изучали теплопроводность композиционных материалов и выявляли влияние различных факторов на теплопроводность [15]. Температура как внешнее условие оказывает важное влияние на теплопроводность бетона [16–20]. Рахим и др. [21] протестировали теплопроводность трех бетонных материалов на биологической основе при различных температурных условиях (от 10 до 40 ° C) в установившемся состоянии с использованием метода защищенной горячей плиты. Они обнаружили, что теплопроводность бетонных материалов увеличивается с повышением температуры.Тандироглу [22] изучил теплопроводность легкого необработанного бетона с перлитовым заполнителем и установил функции взаимосвязи для теплопроводности, водоцементного отношения, количества перлита по массе и температуры. Предлагаемые эмпирические корреляции теплопроводности применимы в диапазоне температур от -70 до 30 ° C. Ли и др. [23] обсудили общие модели теплопроводности, основанные на экспериментальных данных, и предложили модель прогнозирования теплопроводности FC, но они не смогли учесть влияние внешних факторов окружающей среды на теплопроводность модели, таких как температура.Таким образом, теплопроводность различных типов бетона значительно различается при изменении температуры. В настоящее время теоретические модели теплопроводности ТЭ не учитывают температурные эффекты.

В данном исследовании сверхлегкий пенополистирол пенобетон (EFC) с различным содержанием пенополистирола готовится методом химического вспенивания, а его теплопроводность измеряется при различных температурах окружающей среды (от -10 до 40 ° C). На основе результатов испытаний и существующих моделей теплопроводности была получена модель теплопроводности EFC с поправкой на температуру.

2. Экспериментальные программы
2.1. Сырье и соотношение смеси

Загущенный материал, использованный в этом исследовании, был изготовлен из китайского обычного портландцемента 42,5 и летучей золы класса I. Соответствующие технические показатели для этих двух материалов показаны в таблицах 1 и 2. Добавление летучей золы может оптимизировать структуру пор FC и улучшить его теплоизоляционные характеристики. Кроме того, EPS имеет размер частиц от 2 до 4 мм, кажущуюся плотность 18,8 кг / м 3 и теплопроводность 0.0313 Вт / (м · К). Пенообразователь, использованный в этом тесте, представлял собой раствор перекиси водорода с концентрацией 30%. Стабилизатором служил стеарат кальция. Первоначальным укрепляющим агентом был нитрит натрия, а загустителем - эмульсия сополимера акрилата. Используемая вода была водопроводной. Отношение воды к связующему, содержание пенообразователя и дозировка летучей золы были скорректированы для определения эталонного соотношения смеси, которое показано в таблице 3. Всего было приготовлено 12 испытательных блоков пенобетона с химическим вспениванием EPS путем изменения объемной доли EPS (0% ~ 60%).


Тип цемента Удельная поверхность (м 2 / кг) Время схватывания (мин) Прочность на изгиб (МПа) Прочность на сжатие (МПа)
Начальная установка Окончательная установка 3d 28d 3d 28d

PO 42,5 345,00 150 210 5.0 8,0 16,5 46,2


Химический состав (%) Кажущаяся плотность (кг / м 3 ) Насыпная плотность (кг / м 3 )
SiO 2 Al 2 O 3 Fe 2 O 3 Cao MgO NaO

58 30 4.3 1,5 2,8 3,2 2100 1086


Образцы Цемент (г) Зола уноса ( г) w / b Объем пены (%)

A 1 193 157 0,48 6,3

соотношение w / b: вода-связующее.

2.2. Прибор для испытаний
2.2.1. Тестер теплопроводности

Для теста теплопроводности использовался анализатор термических характеристик ISOMET 2114, произведенный в Словакии (рис. 1). Прибор может быть использован для определения теплопроводности, объемного теплового потока и температуропроводности композитов на основе цемента [24]. Он основан на принципе испытания на переходные процессы, а диапазон измерения температуры составляет 15 ~ + 50 ° C с точностью 1 × 10 -4 Вт / (м · К).Прибор можно проверить с помощью зонда или плоской пластины. В этом тесте используется поверхностный зонд с диапазоном измерения 0,04 ~ 0,3 Вт / (м · К).


2.2.2. Испытательный бокс при высоких и низких температурах

В этом испытании использовался стенд для моделирования высоких и низких температур, разработанный Северо-восточным сельскохозяйственным университетом. Его основные показатели производительности приведены в таблице 4.


Полезный объем 5 м × 4 м × 2,5 м
Диапазон температур −45∼ + 60 ° C
Колебания температуры ± (0.05∼0.1) ° C
Мощность нагрева 1500 Вт
Холодопроизводительность 1500 Вт

2.3. Технология приготовления и методика химического вспенивания пенобетона EPS
2.3.1. Технология приготовления

В соответствии с характеристиками пенополистирола и технологией формования химического пенобетона образцы пенополистирола с химическим вспениванием были приготовлены в соответствии со следующим процессом: (a) Частицы пенополистирола были влажными в течение одной минуты с одной третью общая вода.(b) Цемент для смешивания, летучая зола, другие твердые материалы, оставшаяся вода и загуститель смешивали и перемешивали до тех пор, пока смесь не стала однородной. Затем смоченные частицы EPS помещали в смесь и перемешивали в течение одной минуты. Температуру суспензии поддерживали на уровне 25 ° С. (C) Добавляли раствор нитрита натрия. Смесь перемешивали на низкой скорости в течение 30 секунд, а затем перемешивали на высокой скорости в течение 10 секунд. (D) В смесь вливали перекись водорода, и ее перемешивали в течение 10 секунд.(e) Смесь быстро вылили в форму и оставили на 24 часа при 20 ° C. Затем образцы вынимали из формы, когда они имели определенную прочность, и затем осуществляли стандартное отверждение. Бетонный образец показан на рисунках 2 (а) и 2 (б).

2.3.2. Экспериментальные методы

Испытание образцов на плотность в сухом состоянии проводили в соответствии с китайским стандартом GB / T11969-2008. Измерения проводились после высушивания образцов до постоянного веса. Окружающая среда с постоянной температурой обеспечивалась испытательным боксом при высоких и низких температурах.Теплопроводность образцов проверяли после двухчасового стояния при постоянной температуре. При постоянной температуре теплопроводность полированных образцов с обеих сторон измеряли с помощью анализатора тепловых характеристик. Теплопроводность некоторых образцов EFC при 20 ° C показана в Таблице 5. Из-за неоднородности FC были протестированы три положения лицевой поверхности, и было рассчитано среднее значение результатов.


Объемная плотность в сухом состоянии (кг / м 3 ) Пористость (%) Средняя теплопроводность (Вт / (м · К)) Объемная плотность в сухом состоянии (кг / м 3 ) Пористость (%) Средняя теплопроводность (Вт / (м · К))

304 73.47 0,0838 291 73,04 0,0704
366 68,06 0,0926 230 79,93 0,0761
357 68,85 0,0890 0,0921
362 70,07 0,1000 237 79,32 0,0750
336 71.99 0,0810 267 76,70 0,1037

3. Результаты и обсуждение
3.1. Взаимосвязь между объемной плотностью в сухом состоянии и теплопроводностью образцов EFC при различных температурах

Теплопроводность - это основной физический параметр, используемый для характеристики теплопроводности материалов. Механизм теплопроводности у разных веществ разный.Согласно теории теплопередачи [25, 26], свободная подвижность электронов и колебания решетки являются двумя основными независимыми механизмами теплопередачи твердого тела. В основном это упругая волна (или волна решетки), которая, создаваемая колебанием решетки в месте с более высокой температурой, вызывает колебание соседней решетки для передачи тепла в неорганических неметаллических твердых материалах. Поскольку бетон состоит в основном из твердых компонентов, механизм теплопередачи каркаса аналогичен механизму передачи тепла твердого тела.Поэтому теплопроводность бетона в первую очередь зависит от плотности материалов. Обычно низкая плотность соответствует низкой теплопроводности [27].

Закон изменения был получен путем подбора результатов испытаний объемной плотности в сухом состоянии и теплопроводности при различных температурах, как показано на рисунке 3. Объемная плотность в сухом состоянии химически вспениваемого пенобетона EPS положительно коррелирует с теплопроводностью.


Данные испытаний были подогнаны для получения соотношения между объемной плотностью в сухом состоянии и теплопроводностью EFC при температуре 0 ° C.Выражение отношения может быть записано как

. Содержание пены и содержание EPS определяют его объемную плотность в сухом состоянии в EFC и влияют на теплопроводность EFC. В тех же условиях количество пор в пористом материале определяет его теплопроводность. Когда количество пор такое же, теплопроводность увеличивается с увеличением размера пор. Однако соединенные поры увеличивают теплопроводность бетона. Кроме того, объемная доля EPS является ключевым фактором, изменяющим объемную плотность FC в сухом состоянии.На рис. 4 представлена ​​кривая влияния объемной доли EPS на объемную плотность FC в сухом состоянии. Согласно Фигуре 4, микропоры не изменились при добавлении небольшого количества частиц EPS до тех пор, пока не было добавлено 10% частиц EPS. В этот момент соотношение крупных пор в образцах показало тенденцию к увеличению, что привело к уменьшению сухой объемной плотности. Однако, когда процент пор с диаметрами, достигающими 200-400 мкм м, был слишком большим, внутренняя структура пор была бы нестабильной, и некоторые большие поры могут быть разрушены.Это приведет к увеличению сухой объемной плотности образца и, таким образом, повлияет на теплопроводность EFC [28].


3.2. Влияние температуры на теплопроводность пенобетона EPS

В этом эксперименте использовались пять температур, а именно -10 ° C, 0 ° C, 20 ° C, 30 ° C и 40 ° C. Эти температуры использовались для изучения теплоизоляционных характеристик EFC. Теплопроводность FC, смешанного с различным содержанием частиц EPS, была проверена, чтобы получить закон изменения теплопроводности FC с различными объемными долями EPS в зависимости от температуры, как показано на рисунке 5.Как видно из рисунка 5, теплопроводность химического пенобетона положительно коррелирует с внешней температурой. При изменении температуры наибольшая амплитуда изменения ТЭ без частиц ЭПС достигла 52%, что свидетельствует о значительном влиянии температуры на теплопроводность ТЭ [29]. Это связано с тем, что теплопроводность FC связана не только с интенсивностью движения частиц в твердой, жидкой и газовой фазах, но также с силами взаимодействия между различными фазами частиц и их пространственным распределением.Из-за большой пористости FC высокая температура может усилить неравномерное движение и столкновение молекул газа в порах. Это усилило бы взаимодействие между различными фазами частиц, тем самым увеличив теплопроводность.


На рисунке 5 показано сравнение с кривой теплопроводности FC без шариков из пенополистирола, другие кривые с шариками из пенополистирола, очевидно, более гладкие и с меньшими наклонами в том же диапазоне температурных градиентов. Когда объемное содержание EPS составляло 55%, изменение температуры меньше всего влияло на теплопроводность.Этот результат демонстрирует, что надлежащее количество частиц EPS может не только снизить теплопроводность EFC, но и компенсировать изменения теплопроводности, вызванные изменениями температуры. Этот эффект является основным преимуществом структуры EPS и улучшения им структуры пор FC. Эмпирические корреляции между теплопроводностью ТЭ и температурой при различных объемных долях пенополистирола показаны в таблице 6.

028 + 2 + 0,0749

Объемная доля пенополистирола (%) λ = a ( T 2 ) + bT + c R 2

0 λ 0 = −0.000008 T 2 + 0,0008 T + 0,071 R 2 = 0,995
5 λ 5 = −0,00001 T R 2 = 0,995
20 λ 20 = −0,000001 T 2 + 0,0009 T 000 + 0,0659 9 904 = 0.998
55 λ 55 = −0,000009 T 2 + 0,0007 T + 0,0625 R 2 = 0,987

3.3. Влияние содержания пенополистирола на теплопроводность FC при различных температурах

Избыточное содержание пузырьков, введенных в цементную матрицу, вызовет некоторые трудности в формировании бетона.Поэтому сложно снизить плотность и теплопроводность сверхлегкого ТЭ за счет увеличения количества пенообразователя. В этом исследовании определенная объемная доля частиц пенополистирола была добавлена ​​к химическому вспененному пенобетону для изменения собственного веса и теплоизоляционных характеристик бетона.

Частицы EPS обладают хорошими тепловыми характеристиками. Влияние объемной доли EPS на теплопроводность FC при различных температурах показано на рисунке 6. Добавление частиц EPS значительно изменило теплопроводность FC.По сравнению с FC без EPS максимальная амплитуда изменения теплопроводности FC уменьшилась на 46% после добавления определенной объемной доли частиц EPS. Как показано на рисунке 6, теплопроводность EFC сначала уменьшалась, а затем увеличивалась с увеличением содержания EPS. Это произошло в первую очередь потому, что частицы пенополистирола (98% воздуха и 2% полистирола) имеют внутри множество закрытых пор, которые обладают большим термическим сопротивлением. С увеличением содержания EPS соответственно увеличивалось тепловое сопротивление EFC.Следовательно, его теплопроводность снизилась. Недавние исследования показывают, что при добавлении пены в бетон из пенополистирола пенообразователь создает структуру микропор между гранулами пенополистирола [30]. Однако, когда объемная доля пенополистирола слишком велика, расстояние между частицами пенополистирола уменьшается. Это заставляет окружающую пену собираться вместе и соединяться, образуя более крупные поры. В результате увеличилась внутренняя связная пористость и значительно увеличилась теплопроводность, что даже повлияло на обычное формование пеной FC.


Как видно из рисунков 4 и 6, результаты показывают, что сверхлегкий пенобетон с химическим вспениванием EPS с плотностью в сухом состоянии менее 300 кг / м 3 и нормальной теплопроводностью от 0,0704 до 0,0767 Вт / (м · К) может быть получен, когда объемная доля EPS составляет 25% ~ 35%. Кроме того, по сравнению с обычным FC, он показал эффективную теплоизоляцию при изменении температуры.

4. Модель теплопроводности с модифицированной температурой для EFC
4.1. Базовая модель теплопроводности пенобетона
4.1.1. Последовательные и параллельные модели

Основной формой передачи тепла внутри бетонных материалов является теплопроводность. Хашин и Штрикман предложили эффективные модели теплопроводности двухфазной системы [31]. Последовательная и параллельная модели основаны на верхнем и нижнем пределах теплопроводности материалов соответственно. В этих моделях частицы пены и пенополистирола используются в качестве дисперсной фазы, а цемент, летучая зола и суспензия используются в качестве непрерывной фазы для расчета теплопроводности бетона.Обычно выражения можно записать в виде следующих уравнений: Серийные модели: Параллельные модели:

4.1.2. Maxwell - Eucken Модель

Модель Максвелла-Ойкена предполагает, что пена состоит из однородных сфер, которые неравномерно распределены и не имеют сил взаимодействия. Более сжато модель утверждает, что теплообмен не может осуществляться между дисперсными фазами. На этой основе удалось успешно вывести минимальные границы теплопроводности изотропных и макроскопических однородных двухфазных материалов [32].

Когда пена замешивается в бетон, ее форма и распределение будут изменены из-за выдавливания из раствора, но модель учитывает только показатель пористости. Его выражение выглядит следующим образом [32]:

4.1.3. Модифицированная объемная модель для пенобетона

Li рассмотрела объемное содержание пены и предложила модифицированную модель, которая может быть применена к расчету теплопроводности FC путем объединения данных испытаний FC на основе модели теплопроводности Cheng-Vachon [23].Модель предполагает, что в бетонном растворе нет пор, а тепловая конвекция, излучение и контактное сопротивление не учитываются. Он в первую очередь корректирует объемное содержание дисперсной фазы и учитывает влияние сложных факторов, таких как путь теплопередачи и извилистость во время процесса теплопередачи. Эта модель может точно предсказать теплопроводность FC.

Ниже приведены уравнения для модели поправки на объем теплопроводности FC [23]:

Разница в теплопроводности между пеной и цементно-зольным раствором представляется с помощью простого уравнения:

Модифицированный объемное содержание пены может быть выражено следующим образом:

Из уравнений (5) и (6) эффективное тепловое сопротивление FC представляется следующим образом:

Тогда уравнение теплопроводности для FC равно

Оно должно быть отметил, что т и

.

Смотрите также