Состав цементного раствора для стяжки


Раствор для стяжки пола: марка, пропорции, расход цемента

Главная » Пол » Пропорции цемента и песка для стяжки пола

Практически все современные напольные покрытия требуют ровного основания, которого проще всего добиться сделав стяжку пола. Процесс потребует много времени. До укладки покрытия, скорее всего, придется ждать около месяца, но пол будет надежным. Сделать раствор для стяжки дешевле всего из смеси песка и цемента. Хотя есть и другие варианты.

Состав раствора для стяжки пола: ЦПС или бетон с гравием

Содержание статьи

Стяжку пола чаще всего делают из цементно-песчаной смеси. То есть, раствор содержит только цемент и песок, иногда с дополнительными добавками. В классическом варианте стяжку заливают только смешав песок и цемент в определенной пропорции, смесь разводят водой. Называют такой раствор еще пескобетон. В том смысле, что в качестве наполнителя использован только песок. Это наиболее дешевый вариант, но не единственный.

При толщине стяжки более 5 см, могут использовать бетон с заполнителем из мелкого щебня. Бетон классический: к песку и цементу добавляется какое-то количество щебня. Его размеры — не более половины толщины стяжки. Так как минимальные размеры щебня — 20-25 мм, вот и вырисовывается минимальная толщина стяжки из бетона — 50 мм.

Какой раствор для стяжки пола лучше использовать? Пескобетон или бетон с заполнителем из мелкого гравия

Но бетон с гравием более тяжелый и дорогой. Его плюс в том, что он меньше подвержен образованию трещин при усадке и поэтому бетоном заливают теплые полы. Тут малое количество трещин критически важно. Для обычной выравнивающей стяжки наличие усадочных трещин — не такая уж проблема. Бюджет же, обычно, ограничен и поэтому чаще выбирают именно цементно-песчаную смесь.

Иногда для стяжки используют составы на основе гипса. Но они боятся влаги, раствор имеет меньший срок жизни, прочность поверхности ниже. Все это делает их непопулярными. Раствор для стяжки на основе гипса в последние годы — редкость.

Марка цементно-песчаного раствора для стяжки: выбор прочности

Какую марку цементно-песчаного раствора используют для стяжки? Раньше могли класть М50 или М75. Сейчас минимально — М150. Почему? Потому что, прежде всего, требования к отделке были гораздо ниже. То, что раньше считалось нормальным — небольшие ямы, каверны, трещины — сейчас неприемлемо. И это не только «эстетика». В большей степени это требования производителей отделочных покрытий. Они требуют практически идеальную поверхность, которая не пылит, а такую дать может только раствор прочностью не ниже М100.

Марка цементно-песчаного раствора для стяжки выбирается исходя из укладываемого напольного покрытия

Есть и другие причины того, что марку раствора используют более высокую. Первая. Никто не уверен в качестве цемента, так что предпочитают перестраховаться, чем переделывать заново. Вторая — современные покрытия требуют ровного прочного основания и раствор для стяжки должен быть прочным. И третье — под самовыравнивающиеся составы или под современный плиточный клей с полимерными добавками низкую марку просто не уложишь. Чтобы две части покрытия не расслоились, разница в прочности должна быть не более 50 единиц. То есть, если выравнивающая смесь имеет прочность М250, раствор для стяжки пола должен быть прочностью М200 и не ниже. То же самое с плиточным клеем. Так что обратите на это внимание.

Пропорции классической стяжки из ЦПС

Классический раствор для стяжки пола, как уже говорили, это цемент с песком, разведенный водой. Пропорция (количество песка на единицу цемента) зависит от требуемой прочности стяжки и марки используемого цемента. Чтобы поверхность пола была прочной, используют недешевый портландцемент марки М400 и выше.

Пропорции раствора для стяжки пола для М150, М200 и М300 при использовании цемента разных марок

Для стяжки пола в подсобных помещениях можно использовать и более дешевый М300. Его пойдет немного больше, но экономия будет. Для основания в доме или квартире под современные покрытия такой цемент лучше не берите. Переделка потребует значительно больше сэкономленного на цементе.

Новичкам в строительном деле кажется, что если взять больше цемента, будет более прочная стяжка. А вот и нет. Для прочности важно правильное соотношение всех компонентов, а избыточное количество цемента может стать причиной понижения прочности. Если хотите более прочную стяжку — используйте качественный цемент и точно отмеряйте пропорции. Воды, кстати, больше брать тоже не стоит. Это повысит текучесть раствора, но увеличит количество усадочных трещин. Так что еще раз: чтобы получить прочный и надежный бетон, надо точно соблюдать пропорции.

Какой брать песок

Песок лучше брать речной, причем — промытый, как минимум двух фракций: крупный и средний. Почему речной? Потому что он имеет острые грани, а это снижает вероятность того, что он осядет в нижние слои. С этим понятно. А зачем мытый? В нем минимум пыли. Чем меньше пыли, тем выше прочность раствора. Песок также нужен разного размера, чтобы прочность раствора была нормальной.

Для стяжки пола нужен песок: речной мытый, двух фракций (не мелкий)

Если на пол собираетесь укладывать дорогое покрытие с высокими требованиями к прочности основания (паркет, паркетная или инженерная доска, виниловая плитка) лучше брать именно такой песок. Меньше будет проблем.

Последовательность замеса

Когда делают раствор для стяжки пола, сначала перемешивают сухие компоненты — цемент и песок. При ручном замесе (в корыте), что закидывать в первую очередь — цемент или песок, особой разницы нет. Если используют бетономешалку, сразу закидывают песок и крутят его пару минут без цемента. Затем, постепенно, обычно лопатами добавляют цемент. После каждой порции ждут, пока он более-менее равномерно распределится, затем закидывают следующую. Добавив все количество вяжущего, перемешивают пока не получат равномерно окрашенную смесь.

Как приготовить раствор выбираете сами: заказать на заводе/в цеху, замесить самостоятельно

Когда сухие компоненты перемешались до получения однородной массы серого цвета, понемногу вводят воду. Ее считают от количества цемента. Обычно на 1 часть цемента берут 0,45-0,55 частей воды. Почему не указывают точно? Потому что количество воды зависит от влажности песка. А воды желательно наливать минимум: так меньше будет трещин при высыхании.

Готовый раствор или пескоцементная смесь

Те, кто хоть раз самостоятельно замешивали ЦПС или бетон, чаще склоняются к покупке готового бетона. Причем не смеси песка и цемента в мешках, а именно бетона из бетономешалки. Да, по деньгам выходит дороже, но времени и сил требуется в разы меньше. Еще один плюс такого решения: заливка без холодных швов. А это значит — меньше трещин и проблем в дальнейшем. Следующий плюс — бетономешалки могут доставить раствор на нужный этаж. Представьте, что вам надо перетаскать пару тонн песка и цемента. Даже если есть грузовой лифт — это нелегко. Может быть и затратно, если платить подсобникам. Поднимать по лестнице «на плечах» — это вообще проблема.

Чтобы вас не заботили пропорции цемента и песка, можно купить готовую смесь в мешках

В чем плюсы покупки готовой пескоцементной смеси в мешках? В том, что пропорция выдержана точно, песок использован нескольких фракций и в нужных количествах. То есть, стяжка гарантированно будет иметь нужную прочность. Минус — цена. Купить то же количество цемента и песка можно за гораздо меньшую сумму. Это если не заморачиваться с фракциями песка. Если же озаботиться и этим, то экономия станет меньше: не все фракции стоят дешево.

Добавки: нужны или нет?

В классический раствор для стяжки пола могут рекомендовать добавить пластификаторы и фиброволокно или другие вещества для микроармирования. Нужны они или нет? Сначала надо понять, что это и для чего.

Делая раствор для стяжки можно обойтись только песком и цементом

Пластифицирующие добавки

Пластификаторы — вещества, которые повышают пластичность ЦПС. Работать с такими растворами проще. Бетон с пластификатором лучше ложится, легче выравнивается, дает более гладкую поверхность. Вообще, если все компоненты нормального качества, хорошо перемешаны, то и с затворенными водой с ними работать несложно. С добавками, конечно, проще. Но фабричные пластификаторы стоят немалых денег, а это увеличивает стоимость стяжки. Добавлять их надо в небольших количествах, но счет при заливке пола в доме идет на кубометры, так что затраты будут ощутимы.

При замесе пропорции раствора надо соблюдать с большой точностью. Чтобы раствор укладывался лучше, добавляют пластификаторы, а не больше воды

Как обычно, умельцы нашли замену фабричным пластификаторам. В раствор добавляют обычное мыло. Расход его совсем небольшой — стакан или около того на одну бетономешалку. Пластичность раствора повышается, так что многие применяют этот тип добавки. Для новичков стоит сказать: не превышайте рекомендованную дозу. Раствор лучше не станет, а хуже вполне может быть. Мыло повышает пластичность, «смазывая» песок, уменьшая его «сцепление» с цементной жижей. Превышение дозировки может привести к снижению прочности стяжки. Так что будьте точны.

Микроармирование

Как известно, при высыхании цементно-песчаный раствор дает усадку. Величина усадки — от 1,5% до 3% от объема. Конкретно процент усадки зависит от количества посторонних примесей (если песок мытый, усадка будет меньше), верно подобранного состава заполнителя (в данном случае песка), точно соблюденных пропорций и еще ряда условий и факторов.

Так выглядит полипропиленовое фиброволокно

Все бы ничего, но при усадке в растворе образуются трещины. Они есть всегда, только большего или меньшего размера, в большем или меньшем количестве. Чтобы уменьшить количество трещин, в раствор добавляют материалы для микроармирования. Чаще всего в быту используется фиброволокно. Оно бывает:

  • стекловолоконное;
  • базальтовое;
  • металлическое;
  • полипропиленовое.

Наиболее популярно для бытовых целей полипропиленовое фиброволокно. Оно самое недорогое и дает неплохой результат. Как оно работает? В 100 граммах этой добавки содержится огромное количество синтетических волокон. Они очень тонкие, но синтетика отличается высокой прочностью. Эти волокна хаотично, но равномерно распределяются по всей толще раствора. В бетоне они образуют в пространстве подобие решетки. При возникновении напряжений при высыхании стяжки, они связывают части раствора между собой, уменьшая количество и размеры трещин.

Соблюдать нормы добавки важно

Второй эффект от фиброволокна — более гладкая и прочная поверхность. Так что эта добавка в раствор для стяжки пола более полезна и ее точно стоит использовать. Но снова-таки,  строго по рекомендациям. Кажется, что если добавить больше фибры, то трещин будет меньше, но нет. Снизится прочность стяжки.

Расчет объема раствора для стяжки

Чтобы определиться с объемами материалов, надо знать сколько потребуется раствора. Затем, используя необходимые пропорции для стяжки, можно будет вычислить примерное количество песка и цемента. Чтобы провести расчет раствора, нужно знать площадь, на которую будем заливать раствор и толщину слоя.

Площадь заливки вычислить просто: длину комнаты в метрах умножаем на ее ширину. Получаем площадь. Вы уже должны знать максимальный и минимальный слой стяжки. По степени ровности основания, можно определить примерно среднюю толщину. Если найденную площадь умножить на толщину стяжки и получим требуемый объем раствора.

Еще одна таблица с пропорциями раствора для стяжки пола

Давайте рассмотрим пример. Комната 2,8 м на 3,4 м, толщина стяжки — 6 см. Находим площадь заливки — 2,8 * 3,4 = 9,52 м². Чтобы получить кубометры бетона, который нам потребуется, надо 6 см перевести в метры. Для этого 6 см делим на 100. Получаем 0,06 м. Теперь площадь заливки умножаем на эту цифру: 9,52 * 0,06 = 0,5712 м3. То есть, на площадь комнаты 9,5 квадратов при толщине стяжки 6 см потребуется примерно 0,6 кубометра раствора. С таким объемом раствор для стяжки пола точно придется замешивать самостоятельно. Ни один бетонный завод не будет доставлять меньше кубометра раствора.

Если заливать стяжку надо будет сразу в нескольких помещениях, можно сначала посчитать площадь всех помещений под заливку, затем умножить на толщину стяжки. Этот вариант возможен, если нет больших перепадов по высоте между разными помещениями. Если в одной комнате стяжка будет 6 см, в другой 9 см, лучше считать объем для каждого помещения отдельно, а затем сложить результаты.

Расход цемента на стяжку

Если решили раствор для стяжки замешивать самостоятельно, надо определиться с количеством цемента, который вам потребуется. Его можно высчитать исходя из найденного объема раствора. Есть таблицы, в которых приведен расход цемента на стяжку в зависимости от марки раствора и связующего.

Количество цемента в одном кубометре раствора для стяжки

Рассчитаем количество цемента для одного куба стяжки из пескобетона марки М150. Если использовать будем цемент М400, на куб уйдет 400 килограммов цемента (по таблице). Чтобы найти сколько нужно будет цемента для описанного выше примера, надо найденный объем раствора умножить на норму: 0,6 м³ * 400 кг = 240 кг. То есть, на эту комнату надо будет 240 килограммов цемента. Чтобы определить количество мешков, делим эту цифру на массу цемента в мешке.

  • Если в мешке 50 кг цемента, надо будет: 240 кг / 50 кг = 4,8 мешка.
  • При фасовке по 25 кг: 240 кг / 25 кг = 9,6 мешков.

Другая фасовка тоже бывает, но встречается редко. Когда определитесь с маркой и производителем, можно будет точно рассчитать количество мешков цемента на стяжку пола.

Как рассчитать количество цемента на кубометр песка

Еще расход цемента можно посчитать исходя из имеющегося количества песка. Мало ли. Может кто-то будет закупать песок и чтобы не оставалось остатков, его надо весь израсходовать.

Пропорция смеси для строительных работ

Пропорция смеси цементного песка в растворе обеспечивает постоянство характеристик и внешнего вида каменной конструкции. Правильное дозирование ингредиентов строительного раствора дает следующие преимущества:

  • Однородность прочности
  • Равномерная обрабатываемость
  • Цвет однородный
  • Равномерность пропорций и урожайности

В основном дозирование цемента и песка для раствора осуществляется путем дозирования по объему, а не по весу.

В таблице 1 ниже показано количество извести, песка и обычного портландцемента для различных типов растворов в соответствии с ASTM C270 - Стандартные технические условия на строительный раствор для каменной кладки.

Таблица: 1: Пропорции раствора в соответствии с ASTM C270.

Миномет Тип Пропорции по объему
Портлендский цемент лайм Песок
млн 1 ¼ 3 ½
S 1 ½ 4 ½
N 1 1 6
O 1 2 9
К 1 3 12

Соображения по поводу пропорции строительного раствора

При измерении песка необходимо проявлять особую осторожность, так как в зависимости от содержания в нем влаги возникают колебания.Влага, присутствующая в песке, приведет к разбуханию песка.

По сравнению с сухим песком, влажный песок будет иметь больший объем, что приведет к погрешности измерения. Это изменение количества смеси повлияет на прочность и характеристики сцепления раствора.

Раствор смеси с большим количеством песка (больше, чем требуется) приведет к получению жесткой и неработоспособной смеси, создающей слабую связь. Эти типы растворов плохо работают в условиях замерзания и оттаивания.

Рекомендуется проверять измерение объема два раза в день, когда дозирование песка производится по объему в ящик, сделанный из фанеры или пиломатериала. Лицо, отвечающее за этот процесс, может записать, сколько лопат с песком заполнит ящик. Поэтому любое изменение объема песка легко понять.

Удобоукладываемость раствора по сравнению с бетоном высокая. Это связано с тем, что кладочные блоки поглощают некоторое количество воды, это снижает водоцементное соотношение в растворной смеси, что влияет на прочность и сцепление.

Поэтому рекомендуется окунуть блоки кладки в воду на несколько минут до начала строительства. Обеспечение избытка воды удовлетворит эту потребность в абсорбции.

Растворная смесь не характеризуется осадкой или водоцементным соотношением. Это оптимальное содержание влаги, определяемое каменщиком. Слишком сухой раствор не распределится должным образом, что приведет к плохому сцеплению и неполной гидратации цемента. Слишком влажный раствор быстро осядет, и его будет непросто затереть шпателем.

Характеристики хорошей строительной смеси

Хорошая строительная смесь должна иметь следующие характеристики:

  • Должен обладать хорошей обрабатываемостью
  • Раствор должен легко растекаться
  • Раствор должен легко выдавливаться в швы
  • Он должен легко прилипать к вертикальным поверхностям
  • Разрешить легкое позиционирование устройства на линии, вертикали и уровне

Типы пропорций строительных смесей

В основном для строительства кладки используются растворные смеси трех типов.Это:

  • Цемент - Раствор извести
  • Раствор для строительных цементов
  • Раствор цементный раствор

Смесь цементно-известкового раствора

Раствор изготавливается путем смешивания известково-песчаного раствора с обычным портландцементом. Эта смесь приобретет хорошо однородные физические свойства. Эти растворные смеси обладают высокой удобоукладываемостью, высокой способностью удерживать воду, увеличенным временем схватывания и приданием дополнительной прочности.

Кладочный цементный раствор

Эта строительная смесь была разработана для упрощения процесса перемешивания строительного раствора.Это производится путем смешивания кладочного цемента и песка. Состав смеси зависит от производителя.

Составляющие кладочного цемента:

  • Для большей прочности и увеличения времени схватывания используется портландцемент
  • Для повышения удобоукладываемости используются пластификаторы
  • Для повышения прочности и удобоукладываемости используются воздухововлекающие добавки

Раствор цементный раствор

Эта строительная смесь представляет собой кладочный цемент нового поколения.Смесь строительного цемента похожа на кладочный цемент. Единственное отличие состоит в том, что смесь подготовлена ​​и оптимизирована для уменьшения содержания в ней воздуха.

Кладочный цемент предварительно расфасовывается и смешивается с водой и песком на строительной площадке. Они обеспечивают улучшенные свойства и большую прочность сцепления при изгибе.

Подробнее:

Расчет количества цемента и песка в строительном растворе

Типы цемента - использование, состав и преимущества типов цемента

Контрольный список для строительства каменных стен

Процесс строительства кирпичной кладки колонны

Анализ расхода цементного раствора - расчет количества и стоимости

.

20 типов строительных растворов, используемых при строительстве кладки

Различные типы строительных растворов, используемых при строительстве кладки, в зависимости от области применения, связующего материала, плотности и назначения. Строительный раствор представляет собой рабочую пасту, приготовленную путем добавления воды к смеси связующего материала и мелкого заполнителя.

Эта пластиковая паста используется для скрепления строительных материалов, таких как камень или кирпич. Ниже представлены различные типы строительных растворов, используемых при строительстве кладки.

Типы строительных растворов, используемых в кладке

Ниже приведены типы минометов в зависимости от различных факторов:

  1. на основе приложений
  2. На основе связующих материалов
  3. в зависимости от насыпной плотности
  4. на основе прочности (ASTM C270)
  5. на базе минометов специального назначения

На основании заявки

1.Раствор для кирпичной или каменной кладки

Этот тип раствора используется для скрепления кирпичей и камней при кладке. Пропорции ингредиентов для раствора для кирпичной или каменной кладки определяются в зависимости от типа используемого связующего материала.

Рис. 1: Типы строительных растворов - раствор для укладки кирпича или камня

2. Финишный раствор

Раствор финишный применяется для шпаклевочных и штукатурных работ. Он также используется для создания архитектурных эффектов здания, чтобы придать эстетичный вид.Раствор, используемый для декоративной отделки, должен обладать большой прочностью, подвижностью и устойчивостью к атмосферным воздействиям, таким как дождь, ветер и т. Д.

На основе связующего материала

3. Цементный раствор

Цемент используется в качестве связующего материала в этом типе строительного раствора, а песок - в качестве заполнителя. Соотношение цемента и песка определяется исходя из указанной прочности и условий работы.

Цементный раствор придаст высокую прочность и водостойкость.Соотношение цемента к песку может варьироваться от 1: 2 до 1: 6.

Рис.3: Цементный раствор

4. Известковый раствор

В этом случае в качестве вяжущего используется известь. Существует два типа лайма: жирная известь и гидравлическая известь. Для получения жирной извести в известковом растворе требуется в 2–3 раза больше песка, и он используется для сухой работы.

Гидравлическая известь и песок в соотношении 1: 2 дают хорошие результаты во влажных условиях, а также подходят для заболоченных территорий.

Наконец, известковый раствор обладает высокой пластичностью, поэтому его легко наносить.Пирамиды в Гизе оштукатурены известковым раствором.

Рис.4: Известковый раствор

5. Гипсовый раствор

Гипсовый раствор состоит из гипса и мягкого песка в качестве связующего материала и мелкого заполнителя. Обычно он имеет низкую стойкость во влажных условиях.

Рис.5: Гипсовый раствор

6. Калиброванный миномет

В известковом растворе в качестве связующего используется смесь извести и цемента, а в качестве мелкого заполнителя - песок.Промежуточный раствор - это, по сути, известковый раствор, прочность которого увеличивается за счет добавления цемента.

Следовательно, раствор будет иметь высокую пластичность извести и высокую прочность цемента. Соотношение цемента и извести составляет от 1: 6 до 1: 9, и это экономически выгодно.

7. Раствор Сурхи

В растворах сурхи в качестве связующего используется известь, а в качестве мелкого заполнителя - сурхи. Сурхи - это мелко измельченная обожженная глина, обладающая большей прочностью, чем песок, и дешево доступная на рынке.

Рис.6: Сурхинский раствор

8. Разбавленный цементный раствор

В основном это цементный раствор, в который добавляется воздухововлекающий агент для повышения пластичности и удобоукладываемости. Полученный раствор называется цементным пористым раствором.

9. Раствор

В этом типе строительного раствора грязь используется в качестве связующего материала, а опилки, рисовая шелуха или коровий навоз - в качестве мелкого заполнителя. Грязевой раствор полезен там, где нет извести или цемента.

Использование глиняных растворов на Ближнем Востоке и в Центральной Азии, а также в американских культурах юго-запада США хорошо задокументировано.

Рис.7: Раствор

на основе насыпной плотности

10. Тяжелый миномет

Если раствор имеет насыпную плотность 15 кН / м 3 или более, то он называется тяжелым раствором. Обычно в растворах этого типа в качестве мелкого заполнителя используются тяжелые кварцы.

11.Легкий миномет

Если объемная плотность раствора менее 15 кН / м 3 , то он называется легким раствором. Легкий строительный раствор готовится путем смешивания извести или цемента в качестве связующего, песка и опилок, рисовой шелухи, джутовых волокон, кокосовых волокон или волокон асбеста.

Миномет шлаковый - это разновидность облегченных минометов. В звукоизоляционных и теплозащитных конструкциях обычно используется легкий раствор.

на основе прочности (ASTM C 270)

12.Миномет типа М

Это раствор высочайшей прочности при минимальном давлении 17,2 МПа (2500 фунтов на квадратный дюйм). Он используется для наружных кладочных работ и на уровне или ниже уровня грунта, где действуют значительные гравитационные или боковые нагрузки. Несущая стена, фундамент, подпорная стена являются примерами применения ниже уровня земли.

Рис.8: Миномет типа M

13. Миномет типа S

Это раствор средней прочности минимум 12,4 МПа (1800 фунтов на кв. Дюйм) с высокой адгезионной способностью.он используется для укладки с нормальной или средней нагрузкой.

Раствор

типа S обладает большой прочностью, поэтому он отлично подходит для мест, где кладка соприкасается с землей, например, для мощения или неглубоких подпорных стен.

Рис.9: Миномет типа S

14. Миномет типа N

Это раствор средней прочности с минимальным давлением 5,2 МПа (750 фунтов на кв. Дюйм) и наиболее распространенный тип раствора. Раствор типа N применяется для армированных внутренних и надземных несущих стен, на которые действуют нормальные нагрузки.

15. Миномет типа O

Это раствор низкой прочности с минимальным давлением 2,5 МПа (350 фунтов на кв. Дюйм). Раствор типа O используется для внутренних ненесущих применений с очень ограниченным наружным использованием. Кроме того, он используется для повторного указания, где структурная целостность стены не нарушена.

Минометы специального назначения

16. Огнестойкий раствор

Огнестойкий раствор получают путем смешивания глиноземистого цемента с мелким порошком огнеупорных кирпичей.Если есть какие-либо предупреждения о пожаре в конструкциях в определенной зоне, то будет использоваться огнестойкий раствор, который действует как огнестойкий щит.

Рис.10: Огнестойкий раствор

17. Раствор для упаковки

Составляющие цементно-песчаные растворы обычно представляют собой цементно-песчаные, цементно-суглинковые или иногда цементно-песчаные породы. Этот вид строительного раствора используется для уплотнения нефтяных скважин. Строительный раствор должен быть однородным, водостойким и прочным.

Рис.11: Раствор для упаковки

18. Шумопоглощающий раствор

В звукопоглощающих растворах, цементе, извести, гипсе или шлаках, используемых в качестве связующих материалов, и пемзе, огарках в качестве мелкого заполнителя. Он используется для снижения уровня шума и действует как звукоизоляционный слой.

19. Миномет для защиты от рентгеновского излучения

Для защиты от вредного воздействия рентгеновских лучей стены и потолки рентгеновских кабинетов оштукатурены рентгенозащитным раствором.Это раствор тяжелого типа с насыпной плотностью около 22 кН / м 3 . Для приготовления этого типа раствора используются мелкие заполнители из тяжелых пород и подходящие добавки.

20. Химически стойкий строительный раствор

Обычно используется там, где есть вероятность химического воздействия на конструкции. Существует так много типов химически стойких строительных растворов, которые можно приготовить, но выбор раствора зависит от ожидаемого ущерба от конкретного химического вещества или группы химических веществ.

Добавленные добавки могут не противостоять всем химическим воздействиям. Например, химический раствор силикатного типа устойчив к азотным, хромовым, серным или любым кислотным повреждениям, но не может предотвратить повреждение структуры щелочами любой концентрации.

.

Полимерцементный раствор с карьерными отходами в качестве замены песка

Деятельность по добыче карьера создает проблемы загрязнения ландшафта, например, твердые отходы, сбрасываемые на открытые свалки в центральной Мексике. В данной статье представлено технологическое применение этих твердых отходов в новом полимерном материале со свойствами, аналогичными свойствам традиционного раствора. Сделан вывод, что в полимерном материале используется небольшое количество цемента по сравнению с традиционным строительным раствором, и он разработан с использованием переработанного карьера, поскольку они представлены в его гранулометрии.Используемый полимер имел низкое соотношение вода / цемент (0,3), что не позволяло снизить сопротивление из-за тонкой природы материалов (остатков и цемента) в дополнение к сохранению удобоукладываемости материала. Остаток карьера был классифицирован как ил с низкой пластичностью и был охарактеризован дифракцией рентгеновских лучей и флуоресценцией для определения 76% SiO 2 , поэтому он использовался в качестве каменного заполнителя, даже если содержание мелких частиц составляло приблизительно 93%. Максимальное сопротивление сжатию, полученное через 28 дней, составило 8 МПа при соотношении полимер / твердое вещество 0.10, вода / твердые вещества 0,30 и карьер / твердые вещества 0,67. Линейные уравнения были проанализированы для получения более репрезентативных значений с поправкой на квадрат R .

1. Введение

При добыче полезных ископаемых в карьерах (вулканические туфы типа Риолитика), как показано на Рисунке 1, образуется огромное количество твердых отходов, которые загрязняют окружающую среду и образуют много пыли в окружающей среде. Экономическая горнодобывающая деятельность в районе Уичапан, Идальго, Мексика, представленная банками материалов для различных отраслей, занимает второе место по значимости в районе добычи неметаллических руд в штате Идальго.Компании добывают резной камень, который продается на национальном и международном рынках. Конечными продуктами являются плитка для полов и фасадов, колонны, блоки и изделия ручной работы [1]. Объем добычи на карьерах в штате Идальго, Мексика, за последние 5 лет в среднем составляет 58 × 106 кг с годовой стоимостью более 214 000 долларов США [2]. По оценкам, около 40% производственного объема теряется [3], что составляет 23,2 × 103 кг отходов в год. Текущая стратегия обращения с отходами заключается в их выгрузке на свалки на открытом воздухе, независимо от потенциального использования этих побочных продуктов в других отраслях промышленности.Такие отходы подразделяются на два типа: твердые отходы, образующиеся на карьерах или установках обработки, и шлам, образующийся в процессах резки, и детализируются водой, используемой для охлаждения и смазки машин, используемых в указанных процессах. Эти шламы накапливаются постепенно, сокращая производственные площади внутри компании, или выбрасываются по обочинам дорог, накапливаются на неиспользуемых землях, которые со временем вымываются или утаскиваются, и препятствуют потоку водоносных горизонтов или дренажей. Уже накопленные большие количества отходов требуют быстрого решения, которое может быть устойчивым и экономически выгодным для карьерной промышленности: как указали Галетакис и Соултана [4], ключом к успешному использованию карьерной пыли является ее адекватная характеристика и разработка простого и экономически жизнеспособного процесса преобразования этих отходов в товарные продукты.


Производство и захоронение твердых отходов привело к увеличению выбросов углерода и загрязнению в мегаполисах по всему миру. Управление отходами остается глобальной проблемой как для развитых, так и для развивающихся стран [5]. Значительное количество исследователей изучали использование карьерных отходов в строительстве, предлагая эффективные решения этой проблемы. Преимущественно предлагаемые области применения - производство бетона (42%), производство самоуплотняющегося бетона (26%) и производство блоков (18%) [4].Алмейда и др. [3] произвел высокоэффективный бетон, используя переработанный каменный шлам и заменив 5% песка карьерной пылью, улучшив показатели прочности и долговечности во всех смесях, содержащих менее 20% пыли. Баламуруган и Перумал [6] использовали карьерную пыль в регионе Тамил Наду, Индия, в качестве заменителя песка для производства бетона с максимальным увеличением прочности на сжатие (19,18%), прочности на разрыв (21,43%) и сопротивления изгибу (17,8%). ) с 50% заменой песка карьерной пылью.Сурешчандра и др. [7] заменили песок карьерной пылью для производства пустотелых бетонных блоков. Блоки с заменой 50% песка карьерной пылью показали лучшие характеристики, чем блоки с полной заменой песка. Arunachalam et al. [8] использовали карьерный порошок в качестве легкого заполнителя и алюминиевый порошок в качестве воздухововлекающего агента для производства легкого бетона, получая сопротивление 3–7 МПа для смесей с карьерной пылью. Adajar et al. [9] исследовали структурные характеристики бетона с карьерными отходами в качестве заменителя мелких заполнителей в бетонной смеси.Они сформулировали модель для прогнозирования прочности на сжатие приготовленных смесей. Lohani et al. [10] частично заменили песок в производстве бетона. Содержание пыли до 30% увеличивает прочность бетона на сжатие. Если содержание пыли превышает 30%, сопротивление постепенно снижается. Safiuddin et al. [11] пришли к выводу, что добавка мелких карьерных отходов может использоваться как хороший заменитель песка при производстве бетона. Galetakis et al. [12] разработали лабораторный метод производства переработанных строительных элементов карьера.Венкатакришнайя и Раджкумар [13] армировали бетон пластиковыми отходами волокна, заменив природный песок карьерной пылью из региона Тамил Наду, Индия. Максимальное сопротивление и лучшая обрабатываемость были при замене песка на 30%.

Цементный раствор и бетон имеют такие недостатки, как замедленное твердение, низкий предел прочности на разрыв, усадка при высыхании и низкая химическая стойкость. Чтобы уменьшить эти недостатки, использование полимеров для изменения свойств строительного раствора и цемента было доминирующим материалом в строительной индустрии с 1980-х годов, которые сейчас широко используются в развитых странах [14, 15].Полимерно-модифицированные цементные растворы используются в гражданских инфраструктурах, мостах, изоляционных материалах для стен, самовыравнивающихся растворах и бетоне для ремонта трещин благодаря их превосходной стойкости, защите окружающей среды и удобоукладываемости [2]. Существует множество коммерческих латексных полимеров, в основном на основе эластомерных и термопластичных полимеров, которые образуют сплошные полимерные пленки при дегидратации [16, 17]. Латексные полимеры включают бутилбензольный латекс, неопреновую эмульсию, эмульсию поливинилхлорид-винилиденхлорид, стирол-акриловую эмульсию, стирол-бутадиен-карбоксилатекс, полиакрилатный латекс и так далее [18].Содержание пыли, с которым обычно приходится работать, составляет менее 30%, чтобы не повлиять на удобоукладываемость и прочность на сжатие [19].

Полимеры, такие как латекс, редиспергируемые полимерные порошки, водорастворимые полимеры, жидкие смолы и мономеры, используются для модификации строительного раствора или цемента. Латекс - наиболее широко используемая добавка [20]. Как правило, полимеры латексного типа представляют собой сополимерные системы, состоящие из двух или более мономеров, и их общее твердое содержание соответствует 40% или 50% от их веса [21].Гидратация цемента предшествует процессу образования тонких пленок полимера, который приводит к монолитной коматриксной фазе, в которой органическая полимерная матрица и матрица цементного геля гомогенизированы [22, 23]. Обычно соотношение полимер / цемент от 5% до 15% и соотношение воды / цемента от 30% до 50% модифицированного латексом бетона зависит от удобоукладываемости [24].

Рост строительной индустрии привел к чрезмерной эксплуатации природных ресурсов, таких как гравий и речной песок, при производстве бетона.Итак, мировая тенденция заключается в использовании альтернативных материалов (переработанных материалов) в строительной отрасли для рационального и устойчивого использования природных материалов и, следовательно, снижения затрат на строительство [9].

2. Материалы и методы
2.1. Материалы

Были использованы следующие материалы: (a) Цемент CPC 30R (Обычный портландцемент), который соответствует характеристикам, установленным в мексиканском стандарте NMX-C-414-ONNCCE. (B) Отходы карьеров (риолитовый вулканический туф), извлеченные из твердые каменные отходы карьеров «Харамилло» в городе Мани, Уичапан Идальго, Мексика.Он был использован в качестве сокращенного обозначения отходов карьера или остатков карьера в тексте. (C) Используемый полимер представлял собой синтетическую латексную эмульсию и акриловые смолы, которые соответствовали определенным требованиям стандарта ASTM-1059-99 типа I. (d ) Вода, используемая для смешивания и отверждения материала, со значением pH 7 (определяется с помощью тест-полоски).

2.2. Методы

Для экспериментов использовались следующие методы: (a) Геотехническая характеристика отходов. Была проведена полевая идентификация [25] материала, а также гранулометрический состав [26], свойства пластичности [27] и классификация почв [28].(b) Физико-химическая характеристика отходов. Минералогическая характеристика для определения первичных минеральных видов (минеральных ассоциаций месторождений) проводилась методом рентгеновской дифракции (XRD) на оборудовании Bruker D8-Advance с использованием зеркала Гебеля (неплоские образцы), высокотемпературной камеры (до 900 ° C). , Рентгеновский генератор KRISTALLOFLEX K 760-80F (мощность: 3000 Вт, напряжение: 20–60 кВ, ток: 5–80 мА) и модель Seifert JSO-DEBYEFLEX 2002, снабженная медным катодом и никелевым фильтром.(c) Анализ и сравнение гранулометрического состава [26] различных типов песков, а также их минералогического состава, определенного с помощью дифракции рентгеновских лучей и флуоресценции. (d) Испытание на сжатие согласно [29]. Прочность смесей на сжатие определяли в соответствии со стандартным методом испытания прочности на сжатие цилиндрических образцов бетона ASTM C39 / C39M-2016b через 3, 7, 14 и 28 дней. Для испытания на сжатие [29] использовался гидравлический пресс 20 тонн с датчиком давления WIKA, модель A10, от 0 до 200 бар и аналоговым выходом от 0 до 10 В постоянного тока, мультиметром Fluke Brand Model 115.

3. Результаты и обсуждение
3.1. Геотехническая характеристика отходов

По результатам полевой идентификации, анализа гранулометрического состава [26], определения пределов пластичности (жидких и пластичных) [27] и классификации грунтов [28] были получены следующие результаты:

Судя по полевой идентификации, переработанные остатки карьера были материалами с низкой прочностью и медленным расширением, а также очень низким сопротивлением в сухом состоянии. Запаха не было.Цвет материала был от коричневого до белого в светлых тонах. Исходя из классификации почв, материал представлял собой каменный порошок с небольшим содержанием слегка пластичной неорганической глины, расположенный ниже линии «A» на диаграмме пластичности. На рис. 2 показаны кривые анализа гранулометрического состава пяти проб отходов [26]; данные показали, что более 90% материала прошло через 200 меш. Предел жидкости составил 24,98%, а предел пластичности - 21,25%. Пластический индекс в среднем составил 4%. Так, классификация грунта [28] была ML (неорганическая известь с низкой сжимаемостью, материал, частицы которого имеют определенное сцепление между собой в присутствии воды).Согласно [24], карьер для отходов имеет следующие важные технические свойства, когда материал уплотнен и насыщен: проницаемость от полупроницаемой до непроницаемой, приемлемая прочность на сдвиг, средняя сжимаемость и приемлемая обрабатываемость в качестве строительного материала. На рисунке 3 показан использованный карьер для отходов.



3.2. Геологическая и физико-химическая характеристика карьерных отходов

Геологический анализ отходов [30] показал, что геология кальдеры Уичапан соответствует верхнему игнимбриту с столбчатой ​​трещиной и частично сваренным.Игнимбрит содержит каменные фрагменты андезита, кварца и полевого шпата в стекловидной матрице (слабо раздробленные стекловидные фрагменты).

Качественный анализ карьерной пыли с помощью дифракции рентгеновских лучей показан на рисунке 4. Основным компонентом отходов карьера был диоксид кремния.


В таблицах 1 и 2 показаны результаты рентгенофлуоресцентного анализа переработанного карьера (результаты выражены в процентах от соединений, присутствующих в отходах). Таблицы 1 и 2 показывают следующее: (1) Диоксид кремния является основным компонентом и присутствует в количестве 76%.Согласно [31], силикаты являются наиболее важным компонентом гидратированного цемента и причиной их устойчивости. Соединение диоксида кремния представляет собой существенную разницу между отходами карьера и цементом, так как последний требует только 25% содержания. Согласно [32], этот избыток диоксида кремния будет способствовать снижению пористости смеси для улучшения границы раздела пасты портландцемента, прилипшей к заполнителю. Таким образом повышается прочность и компактность конечного продукта.(2) CaO - это соединение, которое обеспечивает наибольшую стойкость к цементу [31]: в этом исследовании отходы карьера содержат гораздо меньшие количества, чем цемент, 2,4% и 67% соответственно. Можно ожидать, что смеси, содержащие высокий процент карьерных отходов, будут иметь низкое сопротивление. (3) Щелочные соединения (такие как Na 2 O) вызывают разрушение бетона и влияют на скорость увеличения прочности цемента [31]. Соединение Na 2 O (0,96%) в отходах карьера находится в пределах допустимого диапазона 0.От 2 до 1,3% цемента. (4) Оксид магния (MgO) [31] - это вещество, которое часто сопровождает оксид кальция. MgO не объединяется в процессе варки портландцемента и, следовательно, не образует гидравлических компонентов, а остается в виде свободного MgO. MgO похож на известь. Таким образом, вода гидратирует и увеличивает объем MgO. Высокий процент MgO предполагает риск расширения [33]. Расширение с помощью MgO более опасно, потому что с годами оно происходит очень медленно. По этой причине стандарт на цемент устанавливает максимальный предел содержания MgO в 5%.В этом исследовании содержание MgO было благоприятным - всего 0,15%. Серо-зеленый цвет портландцемента обусловлен MgO [31].


Химический состав карьера SiO 2 Al 2 O 3 K 2 O CaO Na 2 O TiO 2 SO 3 MgO Cl P 2 O 3

Нормализованное значение 75.958 10,796 8,5099 2,4279 0,9631 0,4791 0,323 0,1486 0,1144 0,0567

Химический состав карьера
BaO ZrO 2 Rb 2 O ZnO SrO Y 2 O 3 CeO 2 O 2 Ga 2 3 Nb 2 O 3

Нормализованные средства 0.0541 0,0536 0,0307 0,0256 0,0209 0,0172 0,0169 0,0023 0,0021

3,3. Анализ и сравнение гранулометрического состава и минералогического состава песков

На рис. 5 показан сравнительный анализ химического состава, полученного с помощью рентгеновской дифракции карьера, речных песков Boye-HUI-53 и Chap-HUI-51 [ 2], полевошпатовый песок, цеолитовый туфовый песок и литейный кварцевый песок.Речные пески взяты из регионов, близких к месту добычи игнимбрита (карьерных отходов). Полевой шпат используется в керамической промышленности [34], а цеолитный туфовый песок - для облицовочного раствора [35]. Литейное производство высококачественного кварцевого песка является побочным продуктом производства черных и цветных металлов [36]. Результаты показали, что минералогический состав всех песков и карьеров очень похож.


Сообщалось о сравнительном анализе гранулометрического состава [26], соответствующем цеолитному песку [35], литейному песку [36], игнимбритовому риолиту и 2 типам песков для строительства в регионах Чапантонго и Бойе в Идальго, Мексика. на рисунке 6.


При сравнении песков (Рисунок 6) было замечено, что пески Chapantongo и Boyé имели схожий гранулометрический состав со средним размером зерна 2,36 мм, превышающим 80% -ное содержание по ячейке 16. Песок Chapantongo был немного тоньше, так как 39% анализируемого материала проходили через 50 меш (размер зерна 0,3 мм) по сравнению с 26% песка Бойе, который проходил через ту же самую сетку. Цеолитовый песок и формовочный песок имели более мелкую гранулометрию, агрегаты которого в обоих случаях проходили на 60% через 30 меш (0.60 мм). Кривая игнимбритов имеет очень плавный наклон, что указывает на то, что размер их зерен значительно отличается от других песков. Более 95% игнимбрита прошли через 200 меш (0,075 мм).

Основываясь на сравнительном анализе физико-химических характеристик отходов карьера и различных песков, было замечено, что замена песка мелким заполнителем может оказаться целесообразной из-за сходства химического состава. Из кривых гранулометрического состава видно, что песок имел более однородные размеры (песчаные агрегаты с очень небольшим количеством мелких частиц).С другой стороны, игнимбрит представляет собой мелкозернистый грунт, поэтому его механическое поведение может быть менее благоприятным. Однако, исходя из сходства химического состава и гранулометрии карьера и различных изученных песков, возможность замены 100% песка в виде мелкозернистого заполнителя игнимбритом может быть использована при производстве строительных растворов и бетонов. Согласно [37], такая замена приводит к увеличению прочности и ударопрочности изделий, а также к снижению усадки из-за высыхания и растрескивания в затвердевшем состоянии.

3.4. Анализ испытаний на сжатие

Испытания на прочность на сжатие проводились в возрасте 3, 7, 14 и 28 дней на цилиндрических образцах диаметром 0,051 м и длиной 0,102 м, с соблюдением отношения длины к диаметру 2, согласно [38]. Разработано 12 смесей разных пропорций, исходя из следующих предпосылок: (1) использовать наибольшее количество карьерной пыли; (2) использовать наименьшее количество воды, не влияя на такие аспекты, как обрабатываемость образца, и без использования добавок, таких как суперпластификаторы; и (3) использовать наименьшее количество полимера.В таблице 3 показаны 12 пропорций для различных образцов, рассмотренных в настоящем исследовании. Образцы были пронумерованы в соответствии с столбцом MIX, где M1 - образец номер один и так далее. Цемент колонн, карьер, вода и полимер показывают количества, использованные в граммах для каждой смеси. Количество 100 г цемента было постоянным во всех смесях, добавляя двойное количество Quarry (200 г) для смесей M1-M6 и тройное количество Quarry (300 г) для смесей M7-M12. В столбце Карьер / твердые вещества высокое содержание остатков игнимбрита выделено по отношению к количеству обрабатываемых твердых частиц, равному 0.67 и 0,75 (отношения рассчитаны по (2)). Количества 90, 120 и 160 г воды, используемые в смесях, соответствуют отношениям воды 0,3 и 0,4 по отношению к количеству твердых веществ (указано в столбце вода / твердые вещества и рассчитано по (3)). Полимер смешивали в соотношениях 0,10, 0,15 и 0,20 по отношению к количеству твердых веществ (указанному в столбце полимер / твердые вещества и рассчитанному по (4)). Вышеупомянутые твердые частицы указаны как сумма цемента и карьера в (1).

900

MIX Цемент (г) Карьер (г) Вода (г) Полимер (г) Карьер / твердые частицы Вода / твердые частицы Полимер / твердых веществ

M1 100 200 90 30 0.67 0,30 0,10
M2 45 0,67 0,30 0,15
M3 60 0,67 0,30 0,20
M4 120 900 30 0,67 0,40 0,10
M5 45 0,67 0,40 0,15
M6 60 0.67 0,40 0,20
M7 300 120 40 0,75 0,30 0,10
M8 60 0,75 0,30 0,15
M9 80 0,75 0,30 0,20
M10 160 40 0,75 0,40 0,10
M11 60 0.75 0,40 0,15
M12 80 0,75 0,40 0,20

.

Раствор - Основные вопросы гражданского строительства и ответы

перейти к содержанию Меню
  • Дом
  • разветвленных MCQ
    • Программирование
    • CS - IT - IS
      • CS
      • IT
      • IS
    • ECE - EEE - EE
      • ECE
      • EEE
      • EE
    • Гражданский
    • Механический
    • Химическая промышленность
    • Металлургия
    • Горное дело
    • Приборы
    • Аэрокосмическая промышленность
    • Авиационная
    • Биотехнологии
    • Сельское хозяйство
    • Морской
    • MCA
    • BCA
  • Тест и звание
    • Sanfoundry Tests
    • Сертификационные испытания
    • Тесты для стажировки
    • Занявшие первые позиции
  • Конкурсы
  • Стажировка
  • Обучение
Меню
  • Дом
  • разветвленных MCQ
    • Программирование
.

Смотрите также